Hypotension following pre-hospital intubation
Curriculum development for pediatric emergency medicine
Analgesia in prehospital emergency medicine
Thrombosis of the dorsal superficial vein of the penis
Effets de la séniorisation des urgences
La régulation médicale et la stratégie de mise à niveau des urgences au Maroc
L'intérêt de disposer d'un CESU au sein d'un hôpital
Douleur spontanée de l'hypochondre gauche
Intoxication au paraquat
Global Network Conference on
EMERGENCY MEDICINE

25 – 29 April 2014

Dubai
United Arab Emirates

Pre-Conference Courses included:

- Ultrasound
- Scenario-based Simulation Facilitator
- Thorough Management of a Complex Disaster
- Non Invasive Ventilation
- Research & Statistics Practical
- ED Administration
- Fluids, Electrolytes and Acid-Base Disorders
- Difficult Airway Management

Topics for Main Conference included:

- Cardiovascular
- Trauma
- GNEMA meets WINFOCUS
- GNEMA meets the Military
- Organisation and Administration
- GNEMA meets the Simulation Experts
- Economy and Emergency Medicine
- And many more...

www.emergencymedicineME.com
Dear Lecturers, authors and reviewers, supporters and friends, a new issue of Med Emergency, MJEM is out now. The classical print copy is always a pleasure to read with its attractive design, tables and useful illustrations. The online version is free access and allows us to have a large audience across the globe. As usual, original research articles, case reviews and articles pertaining to continuous education offer a wide variety of subjects that go in par with the requirements of our transversal specialty. The MJEM can take pride in its mission and vision that render it so special:

First and foremost, like any respectable scientific journal we publish quality articles written by high level field professionals who have been selected through a transparent peer review process. Recommendations for authors are posted on our website and we mention them at the end of many issues as reminders (http://www.newhealthconcept.net/uploads/pdf/recommendations.pdf).

In addition to « Special issues » dedicated to specific scientific themes, our journal reaches out to other cultures and regions. In fact, in this issue a large number of our Moroccan colleagues responded to our invitation and sent us their articles. Some were accepted and others were rejected, but they constitute half of the articles and this makes us very happy. We shall continue to reach out and explore other regions beyond the Mediterranean.

Another specificity of MJEM is our involvement in accompanying authors. We do not only content with examining the articles and verifying their compliance with the requirements, we go way beyond reviewing. We undertake a real work of accompanying some authors who are keen to publish but are not well versed in this. Our “Innovation, editing and translation” committee is doing a remarkable job. Moreover, our publication started as bilingual then became multilingual with the adhesion of countries with different languages, therefore we started to offer translation to the authors who wish to express themselves in their mother tongue language and at the same time we continued to publish in English because it is the common language amongst all of us.

Last but not least, one of the strength points of our publication is youth involvement. We involve young talents in our drafting committee as well as amongst our authors and they are producing an outstanding and very promising job to our publication that is young in age but not in quality exposure as attested by its presence since more than two years in the largest international congresses.

In the name of the editorial board, we extend to you all our thanks for the interest and trust that you place in our publication.
Original Articles
Hypotension following pre-hospital intubation: Frequent situation and inadequately corrected
DELABIGNE G, MIRANDA C, SAPIR D, REBILLARD L, CESARÉO E, LEFORT H, ATCHABAHIAN A, MONCHI M, DESMET TRE T, TAZAROURTE K

Curriculum Development for Pediatric Emergency Medicine rotation:
Experience from Aga Khan University Hospital Karachi, Pakistan
FAYYAZ J, ATIQ H, REHMAN A

Analgesia in prehospital emergency medicine: impact of the 2010 guidelines
ECE A, YORDANOV Y, MLYNSKI AC, KALPOKDJIAN A, SOBOTKA J, POURRIAT JL

Case Report
Thrombosis of the dorsal superficial vein of the penis (Mondor’s Disease)
Diagnosis by Echography combined with Doppler Sonography in an emergency department
EVRA D G, DE LA RIVIERE C, VALDENAIRE G

Special Morocco
Original Articles (French)
Effets de la « séniorisation » des urgences sur la prise en charge des patients de la salle d’accueil des urgences vitales
Effect of the shift to senior emergency physician staffing in the management of the trauma room patients
DAMGHI N, LEFORT H, GUERMAT L, CHEBLI A, BENKODAD I

Emergency Development (French)
La régulation médicale et la stratégie de mise à niveau des urgences au Maroc
Medical dispatch and upgrading strategy of Moroccan Emergency Departments
HSSAIN H, HSSAIN I

L’intérêt de disposer d’un centre d’enseignement en soins d’urgence au sein d’un hôpital
Benefit of providing a Center for Emergency Medical Services Education within a hospital
HSSAIN I, CORDIER E, HSSAIN H, LEFORT H

Case Report (French)
Douleur spontanée de l’hypochondre gauche révélant un infarctus splénique:
Spontaneous left hypochondrium pain due to a splenic infarction:
Une pathologie peu évoquée aux urgences
A disease not frequently mentioned in emergency unit
PATARIN C, BEN HAMMOUDA K, KEMPF N, THIBAUD E, SANIVEAU JR, DUSSAU L, MAKA L, Gottwalles Y

Continuous Education (French)
Testez vos connaissances en toxicologie: Intoxication au paraquat
Test your knowledge in toxicology: Paraquat poisoning
MÉGARBANE B

General information
Recommendations for authors
Membership
HYPOTENSION FOLLOWING PRE-HOSPITAL INTUBATION: Frequent situation and inadequately corrected. A preliminary study in a French Emergency Medical Service (EMS)

Keywords: tracheal intubation, hypotension, prehospital

ABSTRACT

Introduction: Pre-hospital tracheal intubation is frequently performed on site by emergency medical services. Hypotension is a well-established and common complication of intubation. The aim of this study is to evaluate the frequency of hypotension, defined as a drop in systolic blood pressure below 90 mmHg following pre-hospital tracheal intubation and to evaluate the responsiveness of the medical team in correcting it.

Material and methods: This is a single-center observational study including all patients intubated out-of-hospital by the emergency medical team during a 4-month period in the year 2011. The blood pressure was recorded using non-invasive monitors prior to the intubation then every 2 minutes for 30 minutes after the intubation. The evaluation of the medical charts allowed assessing the responsiveness of the medical team to hypotensive episodes.

Results: Thirty-eight patients were included in the study. Mean systolic pressures dropped significantly between pre-intubation, 10 minutes and 30 minutes post intubation measurements (141 mmHg vs. 126 mmHg vs. 116 mmHg, respectively; p < 0.05). Thirty-seven percent of patients had one hypotensive episode, 21% had two episodes and 16% had more than three. They all occurred after the tenth minutes after intubation. Half of the patient had hypotension that was not noticed nor treated by the medical team.

Conclusion: The occurrence of hypotension is common after tracheal intubation and occurs later than 10 minutes after intubation. Positive-pressure ventilation, sedation, and lack of vasoactive medications could be responsible for this. The detection and treatment of hypotensive episodes by the medical team were poor. Larger multicenter trials are needed to confirm these results.

Authors’ affiliation:
Correspondent author: Karim TAZAROURTE, MD, PhD
Pôle SAMU 77 - Urgence - Réanimation. Hôpital Marc Jacquet.
Rue Freytay de Pény, 77000, Melun – France
Karim.tazarourte@ch-melun.fr

Delabigne G, MD1, Miranda C, MD1, Sapiir D, MD1, Rebillard L, MD1, Cesaréo E, MD1, Lefort H, MD2, Atchabahian A, MD1, Monchi M, MD1, Desmettre T, MD, PhD1, Tazarourte K, MD, PhD1
1. Pôle SAMU 77-Urgence-Réanimation. Hôpital Melun, France
2. Service médical d’urgence, Brigade de Sapeurs-Pompiers de Paris, France
3. NYU School of Medicine. New York, USA
4. Service d’accueil des urgences / SAMU 25. CHU Jean Minjoz, Besançon, France

Article history / info:
Category: Original article
Received: Sep 1, 2013
Revised: Oct 29, 2013
Accepted: Nov 5, 2013

Conflict of interest statement:
There is no conflict of interest to declare
INTRODUCTION

Tracheal intubation in the pre-hospital setting has been shown to benefit patients in respiratory failure or with severe brain injury [1,2]. However, intubating patients in this setting is not without risk and is controversial in the setting of pre-hospital non-medical care. Intubation should be performed after induction of general anesthesia [3]. The complications are mainly due to difficulty in securing the airway, or from side effects of the procedures performed [4]. In the French system, emergency physicians are involved in the pre-hospital care and there are national guidelines to standardize the procedure and limit its side effects [5]. Nevertheless, the incidence of hypotension (defined by a systolic blood pressure less than 90 mmHg) has been shown to be 15-25%. Arterial hypotension can worsen mortality and morbidity, especially in patients with severe brain injury [6,7]. A French study (2005-2007) demonstrated that those drops in blood pressure were poorly noticed and managed in the pre-hospitalization setting [8]. The reasons for the failure to detect and manage them are probably numerous but remain poorly studied. Our aim was to evaluate the frequency of hypotension following pre-hospital intubation, and the ability of the medical team to detect and manage these episodes. Our hypothesis was that the frequency of hypotension was underestimated, and that hypotension was frequently not noticed nor treated by the medical team.

METHODS

This is a preliminary observational study in a single center. We included all patients who were intubated by our medical team outside of a hospital between January and April 2011. The French emergency system consists of a pre-hospital medical team managing patients in distress. This system relies on mobile medical teams managed by a hospital-based service called Service Mobile d’Urgence et de Réanimation or SMUR (in english: intensive and emergency medicine mobile service). Each SMUR is under the authority of a service called Service d’Aide Medicale Urgente or SAMU (in english: emergency medical assistance service), one for each French county, who receives emergency calls and dispatches one or several medical teams depending on the number and severity of the cases [9]. The SMUR Melun is located in a non-teaching hospital of 600 beds, able to receive and manage critical cases. Each of the three SMUR medical teams in Melun consists of a physician (emergency physician or sometimes anesthesiologist or intensivist), a nurse anesthetist, and a driver. The physicians and nurses of the SMUR Melun also work in the emergency department, the operating room or the intensive care of the hospital. The SMUR medical team takes care of an average of 3000 patients per year, out of which 10% require pre-hospital intubation. In agreement with the French legislation on bio-ethics in clinical research, this study was submitted to the local Ethics Committee and has been considered as not requiring special authorization because it was an observational study with no change to routine care. Therefore, no specific information was given to patients or families.

Inclusion criteria and patient population. All patients aged 18 and above intubated by a medical team on site for any reason beside cardiac arrest during the study period were included. All patient were intubated following rapid sequence induction (RSI) using either etomidate (0.3 mg/kg) or ketamine (2 mg/kg) in addition to suxamethonium (1 mg/kg). Ventilatory support was controlled using a tidal volume of 6-8 mL/kg, and sedation using midazolam and opioid infusions was initiated after intubation. The non-invasive monitor (Lifepak 15®, Physio-Control, Redmond, WA) was programmed ahead of time to measure the blood pressure every 2 minutes during patient care. The first systolic blood pressure (SBP) was taken at time of intubation (T0) and every 2 minutes thereafter (T2, T4, T6…) until 30 minutes after intubation. The physician would also document hemodynamics manually in the patient’s chart. Once the patient had been admitted to the hospital, a SMUR member who was not involved in patient care printed the SBP values from the monitor’s memory card and placed the printout in the patient’s chart. The initial SMUR physician did not have access to the records and could not make any change to the chart. The investigator then compared the values documented by the physician and the ones obtained from the automated monitor. Hypotension was defined as a value of SBP less than 90 mmHg.

Exclusion criteria were either a technical issue with the monitor (wrong date, blood pressure not measured every 2 minutes, first measurement after the intubation, missing measurements, or measurements not available for the full 30 minutes), or sudden cardiac arrest during the 30 minutes following intubation.

Data analysis. The responsible physician collected all data, including pathology and patient characteristics (age, sex, initial systolic blood pressure, heart rate and estimated weight). Drugs used, including their dosages, the difficulty of the intubation, alternative intubation techniques used if applicable, and the ventilator parameters were noted as well. The collected data from the monitor and from the medical charged were entered into an Excel® 2007 spreadsheet (Microsoft®, Redmond, WA).

Statistical analysis. The quantitative variables were expressed as median and range or mean and standard deviation, and the qualitative variables as percentages. A Student’s t-test was used to compare the means and a Chi square test was used to compare the percentages. A multivariate analysis was performed using linear logistic regression with SPSS 17® (IBM®, Armonk, NY).

RESULTS

During the four months of the study, 53 patients were included (6% of all patients taken care of by the SMUR Melun), and 38 patients had complete data available for analysis. The median age was 57 [44-66], and the male to female ratio was 2 to 1. The patient’s characteristics before intubation are shown in Table 1. A gum elastic bougie was used for difficult intubation for 3 patients, and all intubations was performed in fewer than two attempts in less than 3 minutes. The reason for intubation was the coma.
for 21 patients (55%), respiratory distress for 9 patients, major trauma for 7 patients, and septic shock for 1 patient. General anesthesia was induced with etomidate (0.35 ± 0.3 mg/kg) for 33 patients, ketamine for 3 patients (3 ± 1.2 mg/kg) and thiopental (7.9 ± 3 mg/kg) for 2 patients. Sucralfate was always used at a dose of 1.2 ± 0.2 mg/kg. Mechanical ventilation was initiated following intubation with a mean tidal volume of 7.2 ± 2 mL/kg and a positive end expiratory pressure (PEEP) of 4 ± 2 mmHg. A continuous infusion of midazolam and morphine using a syringe-pump was initiated and titrated to effect as needed. An initial hypotension (SBP < 90 mmHg) prior to intubation was noticed in 3 patients (8%). Norepinephrine was started at T0 in 4 patients and ephedrine was used in 2 patients. The SBP of these patients were corrected.

Hemodynamic changes following intubation. SBP values are displayed in Table II. Median SBP values at T0 and T30 are 141 and 115 mmHg, respectively (p < 0.01). At T10, the median SBP dropped compared to T0 (126 vs 141 mmHg, p < 0.01). Following intubation, 14 patients (37%) had at least one episode of hypotension, 8 patients (21%) had more than 2 and 6 patients (16%) had more than 3. These episodes occurred mainly between T8 and T16 and between T28 and T30 (Table III).

Management of hemodynamic changes by the medical team. The medical team identified only 6 (43%) of the 14 patients who had at least a hypotensive episode. The treatment consisted in an intravenous bolus of 1000 ± 200 mL of normal saline and the initiation of a norepinephrine infusion at 0.25 ± 0.3 mg/h. For these patients, the SBP was brought back to the normal range. Among the 8 patients with unnoticed drops in SBP, 6 (16%) had more than 2 drops in blood pressure. The intravenous volume administered to these patients was 500 mL ± 200 mL of normal saline (p < 0.05) and none received catecholamines. Using multivariate analysis, the presence of hypotension before intubation or the presence of shock were predictive of post-intubation hypotension. No other predictive factor was found (Table IV).

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>N=38</th>
<th>SBP (mmHg)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>33</td>
<td>141</td>
<td>65</td>
<td>226</td>
</tr>
<tr>
<td>T2</td>
<td>35</td>
<td>149</td>
<td>62</td>
<td>240</td>
</tr>
<tr>
<td>T4</td>
<td>37</td>
<td>144</td>
<td>66</td>
<td>233</td>
</tr>
<tr>
<td>T6</td>
<td>37</td>
<td>145</td>
<td>77</td>
<td>205</td>
</tr>
<tr>
<td>T8</td>
<td>36</td>
<td>132</td>
<td>63</td>
<td>190</td>
</tr>
<tr>
<td>T10</td>
<td>33</td>
<td>126α</td>
<td>60</td>
<td>194</td>
</tr>
<tr>
<td>T12</td>
<td>38</td>
<td>128α</td>
<td>58</td>
<td>200</td>
</tr>
<tr>
<td>T14</td>
<td>36</td>
<td>125α</td>
<td>60</td>
<td>241</td>
</tr>
<tr>
<td>T16</td>
<td>35</td>
<td>125α</td>
<td>75</td>
<td>206</td>
</tr>
<tr>
<td>T18</td>
<td>37</td>
<td>120α</td>
<td>79</td>
<td>190</td>
</tr>
<tr>
<td>T20</td>
<td>37</td>
<td>117*</td>
<td>74</td>
<td>176</td>
</tr>
<tr>
<td>T22</td>
<td>38</td>
<td>120</td>
<td>72</td>
<td>183</td>
</tr>
<tr>
<td>T24</td>
<td>33</td>
<td>116*</td>
<td>62</td>
<td>161</td>
</tr>
<tr>
<td>T26</td>
<td>35</td>
<td>114*</td>
<td>65</td>
<td>175</td>
</tr>
<tr>
<td>T28</td>
<td>35</td>
<td>114*</td>
<td>63</td>
<td>169</td>
</tr>
<tr>
<td>T30</td>
<td>36</td>
<td>116*</td>
<td>61</td>
<td>180</td>
</tr>
</tbody>
</table>

*: p < 0.01 vs T0; α: p < 0.05 vs T0

Table I: Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>55 [34-66]</td>
<td>61 [52-68]</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80 [65-90]</td>
<td>70 [60-75]</td>
</tr>
<tr>
<td>GCS</td>
<td>7 [5-14]</td>
<td>7 [5-14]</td>
</tr>
<tr>
<td>SBP on T0 (mmHg)</td>
<td>131 [110-149]</td>
<td>132 [102-155]</td>
</tr>
<tr>
<td>MAP on T0 (mmHg)</td>
<td>97 [80-104]</td>
<td>100 [74-111]</td>
</tr>
<tr>
<td>SpO2 on T0 (%)</td>
<td>99 [96-100]</td>
<td>99 [90-100]</td>
</tr>
</tbody>
</table>

Age, Weight, SBP, MAP are given as median and range
SBP: Systolic blood pressure
MAP: Mean arterial blood pressure
GCS: Glasgow coma score

Table II: Median Systolic Blood Pressure (SBP, mmHg) before induction (T0) and every 2 minutes until 30 minutes post intubation (T30)
Pre-hospital intubation is frequently associated with hypotension. Franschman et al. showed in a pre-hospital study of physicians and paramedics including 399 severe trauma cases that 23% of intubated patients had at least one episode of hypotension before arrival to the hospital vs 11% of non-intubated patients (p = 0.002). In the United States, a cohort study of 3870 patients showed that half of the 890 patients intubated on-site had at least one episode of hypotension vs 29% of non-intubated patients (p < 0.01) [11]. In these studies, data about hypotension were collected on arrival to the hospital; however, the onset and frequency of hypotension were not known. Whether paramedics noticed the drop in SBP and whether they did tried to correct it was not known either.

It seems likely, however, that these episodes are poorly detected on the field. In a French study, blood pressure values were measured three times: at the arrival of SMUR, at the time of transfer, and on arrival at the hospital. This study showed that the majority of the hypotensive episodes occurred during transportation, at times when non-invasive monitoring could be used, but was not for logistical reasons [7]. In a study of 504 severe brain injury patients conducted over 22 months, hypotension was noted in 8% of cases at the time of arrival of the medical team, in 12% during patient transfer, and in 21% at the time of arrival to the hospital (p < 0.01) [8]. In our study, the incidence of hypotension, 37%, was higher than in prior reports. The hypotensive episodes occurred beyond the tenth minute post intubation. This is different from what was described after induction of general anesthesia and intubation in the operating room, where an analysis of 2500 cases showed hypotension occurring in 5% of cases in the first 10 minutes after induction [12]. The predictive variables of hypotension in the operating room were mainly the use of propofol and the amount of opioids administered.

In our study, the multivariate analysis did not find any predictor for the occurrence of hypotension after intubation besides the presence of shock to begin with. However, the timing of the hypotensive episodes beyond the tenth minute post intubation makes us think that it might be partially due to the initiation of mechanical ventilation and the possibility of vasodilation due to continuous sedation, as well as the absence of systematic use of catecholamines. In our study, vasoconstrictors were used to correct an initial hypotension and not to reduce the risk of hypotension.

The occurrence of multiple hypotensive episodes carries a poor prognosis. It has been shown that the occurrence of more than two hypotensive episodes in brain trauma cases increases the mortality 8-fold (OR 8.04 [1.63-39.9]) [13]. In our study, 21% of patients (8 out of 38) had more than two consecutive hypotensive episodes. In this preliminary study, more than half of the episodes of hypotension were neither detected nor treated in the first 30 minutes post intubation. However, the design of our study and the limited analysis in the first half hour might have underestimated the corrective measures taken during the transportation.

Table III: Occurrence of hypotensive episodes after intubation

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>T0</th>
<th>T2</th>
<th>T4</th>
<th>T6</th>
<th>T8</th>
<th>T10</th>
<th>T12</th>
<th>T14</th>
<th>T16</th>
<th>T18</th>
<th>T20</th>
<th>T22</th>
<th>T24</th>
<th>T26</th>
<th>T28</th>
<th>T30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>38</td>
<td>38</td>
<td>37</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Hypotension (nb of patients)</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6*</td>
<td>7*</td>
<td>6*</td>
<td>5</td>
<td>6*</td>
<td>5</td>
<td>4</td>
<td>6*</td>
<td>5</td>
<td>7*</td>
<td>6*</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>7.9</td>
<td>5.3</td>
<td>7.9</td>
<td>10.5</td>
<td>15.8</td>
<td>18.4</td>
<td>18.4</td>
<td>15.8</td>
<td>13.2</td>
<td>15.8</td>
<td>13.2</td>
<td>10.5</td>
<td>16.6</td>
<td>13.2</td>
<td>18.4</td>
<td>15.8</td>
</tr>
</tbody>
</table>

* P < 0.05 vs T0

Table IV: Multivariate analysis of possible predictive criteria for the occurrence of hypotensive episodes

<table>
<thead>
<tr>
<th>OR</th>
<th>p</th>
<th>[95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension T0</td>
<td>1.03</td>
<td>0.002</td>
</tr>
<tr>
<td>Shock</td>
<td>37.47</td>
<td>0.045</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>1.04</td>
<td>0.961</td>
</tr>
<tr>
<td>Tidal volume (7 mL/kg)</td>
<td>1.84</td>
<td>0.089</td>
</tr>
<tr>
<td>Thiopental</td>
<td>0.01</td>
<td>0.009</td>
</tr>
</tbody>
</table>

DISCUSSION
The lack of detection of hypotensive episodes in the first 30 minutes post intubation is due to lack of recognition of the severity of status. It only requires that the medical team look at the monitor or regulate the alarm thresholds to detect these hypotensive episodes and treat the patients. Despite its limitations, our study demonstrates the presence of a major complication of tracheal intubation and prompts us to consider adopting specific measures to treat it.

CONCLUSION

Pre-hospital endotracheal intubation might result in more than 30% of cases in one or multiple episodes of hypotension within the first 30 minutes after intubation. The majority of these cases occurs ten minutes after the intubation and might be caused by positive-pressure ventilation and continuous sedation. The detection and correction by the medical team of these hypotensive episodes are inadequate and require preemptive measures such as early administration of catecholamines.

REFERENCES

ABSTRACT

Background: Paediatric emergency medicine (PEM) has emerged as well recognized specialty worldwide. Pediatric emergency medicine (PEM) rotation is an integral part of pediatric medicine training. This paper shares our experience of developing the first of its kind curriculum for PEM rotating residents that could be used as a template by other hospitals of Pakistan.

Aim: To develop a well-defined curriculum for pediatric emergency medicine rotation with the goal to train and educate the residents in a manner that they could recognize and manage the life threatening medical emergencies in children.

Methods: A batch of 6 to 9 year 1 or year 2 residents from pediatric medicine is rotated through pediatric emergency medicine for 12 weeks every 3 months. Rotating residents of Paediatric medicine during their rotations are expected to manage and decide disposition of critically ill and injured children visiting the emergency department. Until now few efforts has been done to design a process by which they attain this competence. Implementing a well-designed curriculum ensures that the resident will attain the capabilities and lean the skills to manage children and adolescents from common to life threatening illnesses in a competent manner.

Results: Five batches of residents from pediatric medicine have undergone three monthly pediatric emergency medicine rotations and the curriculum. They were subjected to formative and summative assessments throughout the rotation. The minimum passing marks for year 1 and year 2 residents are 50 % and 75% respectively. Failure to pass the end of rotation exams require a remedial period of rotation and appearing in the exams again. The rotating residents had evaluated the rotation as excellent to outstanding on a 5 score likert scale.

Conclusion: Our experience in teaching and training of rotating Paediatric residents as per defined curriculum had laid the foundation in Pakistan.
INTRODUCTION

With the growing need and recognition, pediatrics and emergency medicine have been brought together thus evolving paediatric emergency medicine to focus on the care of children in urgent and emergent care settings [1;2]. The first pediatric emergency medicine fellowship training program began in 1981 at the Children’s Hospital of Pennsylvania [3]. Over the past decade the PEM has shown growth through research fellowship programs and gained recognition in professional organizations like American Academy of Pediatrics [3], American College of Emergency Physician (ACEP) and ambulatory pediatric Association (APA) [4-8].

Training in PEM is integral for emergency medicine and pediatric medicine residents according to College of Physician and Surgeon of Pakistan (CPSP). Although Emergency medicine has recently been approved as a specialty by college of physician and surgeons of Pakistan, pediatric emergency medicine is still awaiting for its recognition. There are well developed curricula for pediatric medicine and emergency medicine residents but none for PEM rotation. Several studies have reported that pediatric residents have deficient resuscitation skills in mock situations as well as they are not well versed with lifesaving skills like endotracheal intubation and intravenous insertion [9-12]. PEM section at Aga Khan University Hospital (AKUH) is the only academic department so far to follow a well-defined curriculum for pediatric residents rotating to pediatric emergency (Figure 1).

The aim of this paper is to share the goals and objectives, teaching methods utilized, evaluation process followed and to discuss the lesson learnt from our experience.

VISION, GOALS AND OBJECTIVES

For more than 27 years Aga Khan University has been known in Pakistan as a reputed institute with excellence in teaching and learning. This aim is accomplished by various programs in educational development to inspire the professionals to bring positive change in their communities. AKUH, a private teaching institute is committed to provide the best possible options for disease diagnosis, management of life threatening conditions and team based patient care. Taking this vision forward, PEM curriculum is designed to provide practical skills, expert knowledge and best hands on insights with a support network to empower the trainee to create an impact in the care of children in the community.

The main goal of developing a well-defined curriculum for pediatric emergency medicine rotation is to train and educate the residents so that they could recognize and manage the life threatening medical emergencies by applying principles of resuscitation in these patients. Another important concept aimed is to prioritize the care for pediatric patients coming to emergency department according to their severity of illness by following the triage protocols.

To achieve this objective the residents are trained in a way that they are able to evaluate and manage acutely ill and injured children. They were also made to interact with undiagnosed on whom they learn to take focused history, relevant investigations, interpretation of labs, formulating a management plan and their final disposition.

METHODS

1. Course Organization:

A batch of 6 to 9 year, 1 or year 2 residents from pediatric medicine is rotated through pediatric emergency medicine for 12 weeks every 3 months. These residents are divided in smaller groups to work in shifts in emergency department. During these shifts the residents are involved in managing patients of different acuity ranging from stable walk in clinic patients to life threatening acute emergencies like seizing child, poly trauma, acute respiratory emergencies, cardiac failure and sepsis with and without shock. They learn these concepts through case discussions and hands on practice with the on call faculty singly. Residents are instructed to keep a log of their cases, procedural skills and the patients encountered their final diagnosis and final disposition. This course has been shared and approved by residency director and coordinator of Pediatric and Emergency department both. The process is shown in Figure 2.
2. Course Content

This 12 week course consisted of following components:

Basic Patient care: Residents are primarily responsible for the management of all pediatric patients visiting the emergency department of AKUH from the time of triage till the transfer to inpatient facility, High dependency units or discharge under supervision of PEM faculty. The residents are responsible for taking focused history and performing physical examination. Emergent needs of patients are addressed immediately. After evaluation the residents are supposed to formulate a differential diagnosis and plan appropriate diagnostic and therapeutic intervention, in coordination with emergency department (ED) team. This plan is discussed with on call faculty by the residents and one is to one and a small group discussion is done on patient in every shift. Residents are directly involved in patient care and decision making by thoughtful review of diagnostic results and frequent reassessment of the patients. It is taught to residents to maintain strong therapeutic alliance and family centered care through role modeling. The residents also perform appropriate diagnostic and therapeutic procedures after obtaining informed consent from parents under faculty supervision. The residents are supposed to keep the log of all the patients with their diagnosis that they had seen in the emergency room.

Skills Training: During the PEM rotation the residents are made proficient in cardiopulmonary resuscitation, airway management through bag mask ventilation, endotracheal intubation, interosseous insertion, management of raised ICP, trauma and different types of shocks through simulations on manikins, videos and real time case management with supervision by a faculty (Figure 3 and 4). They have to keep the log of all the procedures done and get it countersigned by a faculty.

Medical Knowledge: Residents will gain knowledge from the wide range of children coming with varied diagnosis from acute life threatening emergencies to complex chronic disease processes through didactic sessions once a week of 3 hours. The pediatric patients visiting the AKUH ED ranges from multi-organ system disease, trauma, congenital cardiac diseases, hematological emergencies, febrile neutropenia and common acute surgical emergencies.

Teaching Methods used for achieving this objective are:

- Cased based discussions of case histories of patients.
- Tutorial sessions on weekly basis in which pre reading material is given to the residents and they were expected to come prepared.
- Real patient exposure under supervision.

<table>
<thead>
<tr>
<th>During the rotation they are expected to manage patients diagnosed with, but not limited to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Poly trauma / road traffic injuries</td>
</tr>
<tr>
<td>• Congenital heart diseases</td>
</tr>
<tr>
<td>• Diabetic ketoacidosis</td>
</tr>
<tr>
<td>• Rapid sequence intubation</td>
</tr>
<tr>
<td>• Respiratory failure</td>
</tr>
<tr>
<td>• Sepsis / septic shock</td>
</tr>
<tr>
<td>• Toxic ingestions / poisoning</td>
</tr>
<tr>
<td>• Renal failure</td>
</tr>
<tr>
<td>• Neonatal resuscitation / sepsis / hyperbilirubinemia</td>
</tr>
<tr>
<td>• Myocarditis</td>
</tr>
<tr>
<td>• Upper respiratory diseases including stridor, foreign body and croup</td>
</tr>
<tr>
<td>• Acute abdominal pain</td>
</tr>
<tr>
<td>• Intestinal obstruction</td>
</tr>
<tr>
<td>• Intracranial bleeding / raised intracranial pressure / coma</td>
</tr>
<tr>
<td>• Children with burn</td>
</tr>
<tr>
<td>• Bites</td>
</tr>
</tbody>
</table>

Research: The residents rotating to pediatric emergency medicine are kept updated to recent advances and research through journal club and evidence based learning once in a month for 2 hours. In these sessions they not only learn to critically appraise a research article but also the basic concepts of statistics like study design, sampling technique, sensitivity, specificity, p-value, positive and negative predictive value.

Interpersonal and Communication skills: On-call faculty do daily morning rounds with the residents which include the residents, senior medical officer, ED attending, students and nursing staff. These rounds help them to improve their interpersonal relationship as well as communication skills between their peers. While working in ED they have to collaborate with other teams including subspecialty consultants and fellows, surgical teams and fellow staff. The residents are also taught how to interact and counsel the parents in an empathetic manner listen and answer their concerns and keep them updated about their child’s condition and care plan. This is achieved through role modeling during daily teaching rounds and counseling session by on call faculty.

Professionalism and Ethics: Residents are encouraged to interact with the diverse patient’s population coming all over
Pakistan in an extremely ethical and professional way through counseling sessions and role modeling. They are trained to provide compassionate, empathetic and culturally sensitive communication to their patient and families irrespective of their ability to pay for services.

3. Evaluation Process

Evaluation of residents: The residents are evaluated continuously throughout their rotation. The formative assessment is done by all faculty members by paying attention to their patient care, commenting about their medical knowledge, their interaction and communication skills, chart documentation and direct observation of their history taking and physical examination and case presentation skills. Each faculty gives feedback to the residents after their shifts and if the residents are facing any problem or difficulty than individual meeting is done with the residents to remediate their deficiencies. This information is sent to the pediatric residency director at the end of each month through evaluation forms manually or electronically. They are also evaluated on the basis of their attendance in the shifts, in academic sessions and morning rounds. The summative evaluation is done at the end of 12 weeks rotation through multiple choice question, short essay questions and task oriented assessment of clinical skills based end of rotation exam. This result is also shared with the pediatric residency director.

Faculty Evaluation: The residents also evaluate each faculty members individually that is shared with the entire faculty on quarterly basis. The faculty also evaluates their peer faculties. It helps all of us to improve ourselves and improve our teaching strategies.

Evaluation of Whole Rotation: This is done by the residents and faculty both at the end of their rotation. External and internal evaluation of whole curriculum is also done on yearly basis.

RESULTS

Till to date five batches of residents from pediatric medicine have undergone three monthly pediatric emergency medicine rotation and the curriculum. They have participated in formative and summative evaluation process. This means that so far 34 residents have received the basic PEM rotation training. The minimum passing marks for year 1 and year 2 residents are 50% and 75% respectively. Failure to pass the end of rotation exams require a remedial period of rotation and appearing in the exams again (Table I).

DISCUSSION

Children and adolescents account for large percentage of ED visits annually. At AKUH pediatric population constitute around 25-30% of all ED visits. Children are not young adults and are recognized as a distinct group of patients with variable clinical presentations and unique needs and require adequately trained staffs that are able to respond to it appropriately [13-15]. PEM is still in developing phase even in developed countries and facing lot of challenges in developing countries [2]. In Pakistan it is still an unrecognized specialty. This has an impact not only on the training of rotating residents but also quality of care in emergency is affected.

PEM requires family centered diagnostic expertise and efficient and decisive resuscitative abilities in order to be effectively to treat children with life threatening emergencies, pediatric and emergency medicine residents need to be rotated to PEM with adequate patient contact, established curricula and other bedside methods of education. We faced dual challenge as currently no curriculum for PEM rotation is existing therefore we have to formulate the one which could fulfill the local needs in equivalence to international standards. The designing of the curriculum required the dedication of pediatric emergency faculty time and efforts as well as training in the field of education and support from the department and education experts.

Table I: Evaluation of the Paediatric Emergency Medicine rotation by residents

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Average Scores secured in each parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Objectives of the sessions were met</td>
<td>4.26</td>
</tr>
<tr>
<td>2 Important points were emphasized.</td>
<td>4.41</td>
</tr>
<tr>
<td>3 Presentation was at the level of my understanding</td>
<td>4.26</td>
</tr>
<tr>
<td>4 Encouraged / motivated my participation</td>
<td>4.26</td>
</tr>
<tr>
<td>5 Interaction b/w participants and facilitator took place</td>
<td>4.26</td>
</tr>
<tr>
<td>6 Helped increase my knowledge on the topic</td>
<td>4.41</td>
</tr>
</tbody>
</table>

Average score secured in each form 4.31 (Total number of residents n=34)
Completing the whole pediatric emergency medicine concisely in three months in a way that it not only cover all the important aspects of PEM but also provide hands on training and skills for managing children with life threatening ailments to the residents along with the effective evaluation process were very difficult and demanding tasks.

To help the residents to deal with difficult situations they were encouraged to participate actively in running codes, counseling the families and performing lifesaving procedures unique to emergency room under observation of on call faculty. Feedbacks were given by the on call faculty to the residents after the end that would help in their improvement.

On the basis of the feedback of residents modifications were made in the curriculum as well teaching techniques and strategies were modified.

CONCLUSION

Our experience had laid the foundation of training the residents in the PEM on the basis of designed curriculum. We believe that it would improve their resuscitation skills and hence the quality of health care delivered to the pediatric patients with critical and life threatening medical conditions.

REFERENCES

ANALGESIA IN PREHOSPITAL EMERGENCY MEDICINE: IMPACT OF THE 2010 GUIDELINES

Key words: pain, prehospital emergency medical care, analgesia, quality of medical records

ABSTRACT

Purpose: Evaluate the impact of the intervention on pain relief in patients. Evaluate the impact of the intervention on the quality of the medical records.

Methods: prospective interventional study, type “before and after” study leads during 2 four weeks phases. Patients in pain, with spontaneous ventilation managed by an intensive care ambulance (ICA) in urban environment were included in the study. Patients’ characteristics and the description of the medical management and care provided were collected. Pain relief has been assessed by the final value of the numeric scale (NS). Medical recordkeeping have been assessed by the percentage of initial and final NS reported. After an observation phase, physicians have attended a reminder meeting on 2010 guidelines on analgesia and shall respect the morphine protocol for severe and acute pain. Pain relief and the medical recordkeeping have been reassessed after the intervention.

Results: 104 patients have been included (54/50). The populations are comparable for all study criteria (sex, age, comorbidities, intervention type, transport, evolution and initial NS).

There is no significant improvement of the final NS median but a downward trend of the median from 4 to 3 was noticed. There is a significant improvement in the quality of medical records keeping: the percentage of initial NS recorded went from 35% to 86% (p < 0.0001) and the percentage of final NS recorded went from 19% to 83% (p < 0.0001).

Conclusion: A reminder intervention on 2010 guidelines regarding analgesia conducted in a mobile emergency and resuscitation allowed for a significant improvement of the assessment and follow up of the pain. Their pain relief seems improved but insignificantly in the studied population.

Authors’ affiliation:
Correspondent author: Antoine ECHE, MD
SAU Hôtel-Dieu, 1 place du Parvis Notre Dame 75004, Paris
antoine.eche@free.fr

Eche A, MD1,2, Yordanov Y, MD1,2, Mlynski AC, MD1, Kalpokdjian A, MD1, Sobotta J, MD1, Pourriat JL, MPH1,2
1. SAU Hôtel-Dieu, 1 place du Parvis Notre Dame 75004 Paris
2. Faculté Paris Descartes, 10 rue de l’école de Medicine 75006 Paris
3. Service medical d’urgence, Brigade de sapeurs-pompiers de Paris

Article history / info:
Category: Original article
Received: Oct 8, 2013
Revised: Nov 6, 2013
Accepted: Nov 19, 2013

Conflict of interest statement:
The authors declare no conflict of interest.
INTRODUCTION

Pain is an extremely frequent symptom in both hospital and out of hospital emergency medicine [1-3]. Pain is one of the priorities in terms of public health response. Medical care of acute and severe pain (NS ≥ 6) in prehospital emergency medicine can be improved [4]. Pain remains a symptom undertreated in this context [5,6]. French studies in prehospital emergency medicine revealed that among patients in pain, less than the half was sufficiently relieved [7].

Health authorities, through ministerial minutes, in association with the scientific societies, have established good practice guidelines for pain management [8]. In 2010, these guidelines were updated under “sedation, analgesia in emergency structure” by both the French Society for Anaesthesia and Intensive Care (SFAR) and the French Society for Emergency Medicine (SFMU) [9]. The guidelines emphasize the need to use protocols and procedures, to continuously train medical and paramedical staff and perform evaluation of professional practices.

The need to assess the professional practices is the core of this study, not only to determine the impact of the new guidelines, but also to improve care provided. We aimed at evaluating the impact of implementing SFAR/SFMU guidelines, “sedation, analgesia in emergency structure”, on care provided by an urban mobile emergency and resuscitation service (SMUr) to patients in pain.

The main purpose of this study is to evaluate the impact of the intervention on pain relief. The secondary purpose is to compare the quality of the medical records keeping, particularly pertaining to the pain supervision during the intervention.

METHODS

1. Study design

It is an interventional, prospective trial, before-and-after study. It has been conducted within a mobile emergency and resuscitation service (SMUr), in an urban environment, over two phases of four weeks each, in December 2010 and February 2011. For all patients in pain, patient characteristics and the medical care data were collected.

2. Intervention

During the first one-month phase, observation allowed data collection on department practices. After this first phase, an intervention was performed. It was a department meeting for medical and paramedical staff. During this intervention, updates of SFAR/SFMU 2010 guidelines “sedation and analgesia in emergency structure” [9] were presented. The emphasis was particularly laid on the updates from the last guidelines, and on the following two points: the need to report the initial and final NS, and to respect the guidelines on the use of morphine in every acute severe pain (NS > 6). Another four-week monitoring phase had followed the intervention. During medical care, physicians were asked to register systematically an evaluation of the patient pain using the NS in self-assessment. A follow-up on pain had to be achieved during medical care, every 5 minutes if a morphine protocol is implemented, otherwise freely. Every acute severe pain (NS > 6) should be treated by intravenous morphine titration protocol as per the guidelines; boluses of 3 mg at 5 minutes interval until achieving a NS ≤ 3 for a patient weighing more than 70 kg [9]. In need of co- opioid analgesics in addition to morphine, it was request to choose ketamine over midazolam. It was recommended to use MEOPA in mild trauma and pregnant women. Patients for whom the ground of appeal was pain (or admitted for pain treatment), patients for whom the pain evaluation recorded was (NS > 0) and patients requiring a pain relief treatment were included. We excluded patients whose state of health was not compatible to perform a self-assessment of the pain, in particular when an intubation with sedation and mechanical ventilation was performed. The main outcome of this study was the comparison of final NS in the two phases of the study. The secondary outcome was the comparison of percentages of initial and final NS recorded by physicians in both phases of the study.

3. Data collection procedure

Every 4 weeks, all medical records of patients managed by the hospital mobile unit were proof read. Data were retrieved on patients’ characteristics and the description of the medical care provided. For every patient, the choice of transportation mode, patient orientation on the provided medical care, the initial NS of pain evaluation (when admitted to SMUr) and final NS (at the end of the medical care).

Table I: Description of investigated population

<table>
<thead>
<tr>
<th>Phase</th>
<th>N</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 ; N = 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 ; N = 50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Median age 57 [42-69.75] 62 [47.25-72.25] NS

Sex

<table>
<thead>
<tr>
<th>Sex</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>29 (53.7%)</td>
<td>23 (46%)</td>
<td>NS</td>
</tr>
<tr>
<td>Women</td>
<td>25 (46.3%)</td>
<td>27 (54%)</td>
<td></td>
</tr>
</tbody>
</table>

ICA’s interventions

<table>
<thead>
<tr>
<th>ICA’s interventions</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of hospital</td>
<td>48 (89%)</td>
<td>46 (92%)</td>
<td>NS</td>
</tr>
<tr>
<td>Between hospitals</td>
<td>6 (11%)</td>
<td>4 (8%)</td>
<td></td>
</tr>
</tbody>
</table>

Transport

<table>
<thead>
<tr>
<th>Transport</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA</td>
<td>37 (69%)</td>
<td>36 (72%)</td>
<td>NS</td>
</tr>
<tr>
<td>Fire-fighters</td>
<td>7 (13%)</td>
<td>5 (10%)</td>
<td></td>
</tr>
<tr>
<td>Private ambulances</td>
<td>4 (7.4%)</td>
<td>8 (16%)</td>
<td></td>
</tr>
<tr>
<td>Left alive on the site</td>
<td>6 (11%)</td>
<td>1 (2%)</td>
<td></td>
</tr>
</tbody>
</table>

Comorbidities

<table>
<thead>
<tr>
<th>Comorbidities</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17 (31.5%)</td>
<td>9 (18%)</td>
<td>NS</td>
</tr>
<tr>
<td>1</td>
<td>27 (50%)</td>
<td>27 (54%)</td>
<td></td>
</tr>
<tr>
<td>≥ 2</td>
<td>9 (18.5%)</td>
<td>12 (28%)</td>
<td></td>
</tr>
<tr>
<td>Field empty</td>
<td>1 (0.18%)</td>
<td>2 (0.04%)</td>
<td></td>
</tr>
</tbody>
</table>

Full diagnosis

<table>
<thead>
<tr>
<th>Full diagnosis</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>21 (39%)</td>
<td>21 (42%)</td>
<td>NS</td>
</tr>
<tr>
<td>Cardiology except SCA</td>
<td>17 (31.5%)</td>
<td>15 (30%)</td>
<td></td>
</tr>
<tr>
<td>Traumatology</td>
<td>7 (13%)</td>
<td>4 (8%)</td>
<td></td>
</tr>
<tr>
<td>Pneumology</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gyneco-obstetric</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Neurology/psychiatry</td>
<td>1</td>
<td>4 (8%)</td>
<td></td>
</tr>
</tbody>
</table>
Table II: NS assessment by ICA during the observation phases

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial NS</td>
<td>4 [1.5-6]</td>
<td>4 [2-6]</td>
<td>NS</td>
</tr>
<tr>
<td>Final NS</td>
<td>4 [0-6.5]</td>
<td>3 [1-5]</td>
<td>NS</td>
</tr>
<tr>
<td>Number of initial NS fulfilled in the medical records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>35 (65%)</td>
<td>7 (14%)</td>
<td>N.S.</td>
</tr>
<tr>
<td>Fulfilled</td>
<td>19 (35%)</td>
<td>43 (86%)</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>Number of final NS fulfilled in the medical records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>30 (81%)</td>
<td>6 (17%)</td>
<td>N.S.</td>
</tr>
<tr>
<td>Fulfilled</td>
<td>7 (19%)</td>
<td>30 (83%)</td>
<td>p < 0.001</td>
</tr>
</tbody>
</table>

4. Statistics

Quantitative variables were expressed as mean (± standard deviation) or median [Q1-Q3]. Qualitative variables were expressed as numbers and percentages. To compare continuous variable Student t-test was performed. Categorical variables were compared using the Chi-square test also called Pearson’s chi-squared test. Where the amount of cell count was insufficient, Yates’s correction (or Yates’s chi-squared test) was used, when all values were greater than 2.5, otherwise the Fisher’s exact test was applied. All tests performed were two-tailed tests interpreted with a significance level of 5% (p < 0.05).

RESULTS

104 patients were included in two phases of four weeks each, of which 54 in the monitoring phase (December 2010) and 50 in the intervention phase (February 2011). The two studied populations were similar (Table I) on the sex ratio, patient age, number of comorbidities, type of intervention, the distribution of diagnoses, the type of transport carried out and the destination at the end of the intervention. Medians of the initial NS in patients with pain were 4 [1.5-6] in the monitoring phase and 4 [2-6] in the interventional phase (p = 0.84). The medians of the final NS were 4 [0-6.5] in the monitoring phase against 3 [1-5] in the interventional phase. Thus a decrease of 1 point of the median is observed in the intervention phase but this difference was statistically insignificant (p = 0.78). A significant increase in the quality of medical records keeping (Table II) was observed. The percentage of the initial NS reported in the medical records rose from 35% during the monitoring phase to 86% during the interventional phase (p < 0.001). Similarly, the percentage of the final NS reported in the medical records went from 19% during the monitoring phase to 83% during the intervention phase (p < 0.001).

DISCUSSION

The main outcome of this study was that raising awareness and reminder of the guidelines on analgesia allows a significant increase (p < 0.001) in the quality of the medical records keeping on the assessment of pain in patients taken care of by SMUR. The low percentage of initial NS reported in the monitoring phase showed that, during our daily practice, patients’ pain did not have a good traceability. Extensive epidemiological studies in North America [10;11] have demonstrated that pain remains very often a neglected symptom and is insufficiently revaluated in emergency medicine. Our study seemed to show a 1-point decrease in the final NS of the patients that went from 4 in the observation phase to 3 in the intervention phase; however this outcome was not statistically significant and the clinical relevance of such difference remains unproven. Several reasons could have dwindled the scope of this work. Firstly the initial NS was 4, that does not correspond to an acute severe pain (NS ≥ 6), and the maximum benefits of this study were expected for these patients. It is to be noted that the intervention involved implementing the guidelines regarding a specific analgesic morphine protocol to be applied in case of acute severe pain. Moreover, the small numbers of patients included in each phase of the study did not allow a subgroups analysis, (acute severe pain or according to the type of pathology). The NS decrease identified in this work was not significant. Our results are different from those of Ricard-Hibon et al. in 1999 [12]. This study included 108 patients in the observation phase and 105 patients in the intervention phase. The intervention involved the use of a standardised morphine protocol in the acute severe pain outside the hospital. A significant decrease of 0.93 of the average final NS was found. One of the explanations of a lesser significance of our study in comparison with that of Ricard-Hibon could be that ours focused on acute severe pain only. Another explanation may be the lack of statistical power or a poor adherence to the protocol. In fact, another study showed that poor implementation of the analgesic morphine protocol was correlated with a poorer pain relief [13].

One of the main limitations was the sample size during each phase of the study. We included 54 patients in the monitoring phase and 50 patients in the post-intervention phase. It is worth mentioning that a high proportion of data was missing without imputation method for their management. We have only analyzed complete medical records. On these first biases adds a selection bias. During the first phase of the study, physicians tended to
follow up pain mainly amongst patients in most painful state and for those with a morphine prescription. These patients had a marked decrease between initial and final NS than in patients that were not reassessed. This bias tended to minimize the intervention impact on the final NS decrease between the two phases of the study. Another bias in the study is due to the Hawthorne effect [14]: the fact of knowing that they are participating in a study will increase physicians’ motivation and thus their efficiency in the evaluated work. It was possible also, that in the same time, physicians change their daily practices of pain management by providing greater time or trying to improve their daily practices. The Hawthorne effect would therefore tend to overestimate the medical records keeping and the final NS decrease in the intervention phase.

CONCLUSION

A reminder on the 2010 French guidelines on “analgesia in emergency medicine” carried out in prehospital emergency medicine setting allowed for a significant improvement in the evaluation and follow-up of pain in patients. Pain relief seemed to improve without this difference being statistically significant. Further work is therefore needed to demonstrate a possible benefit in terms of patients' relief. These studies should include enough patients to allow answering the question. The medical records shall be optimised to limit the selection bias, and the missing data. Moreover, inclusions criteria shall only focus on patients with acute severe pain (NS ≥ 6), which is the target of these guidelines.

REFERENCES

THROMBOSIS OF THE DORSAL SUPERFICIAL VEIN OF THE PENIS (MONDOR’S DISEASE) DIAGNOSIS BY ECHOGRAPHY COMBINED WITH DOPPLER SONOGRAPHY IN AN EMERGENCY DEPARTMENT

Keywords: thrombosis, mondor, penis, echography, doppler.

ABSTRACT

Penile Mondor’s disease is a rare disease characterized by a thrombosis of the dorsal vein of the penis, inducing local pain, induration, and a dilatation facing the latter, on the back and proximal part of the penis. The known risk factors are hypersexuality, sexual abstinence, trauma and neoplasia. The differential diagnoses have to be eliminated, especially sclerosing lymphangitis, or Peyronie’s disease. Echography coupled with Doppler Sonography is the best technique, individualizing the thrombus and a lack of blood flow in the dorsal vein of the penis. Diagnosis can reassure and allay the anxiety of the patient facing this disease. The mainstay of treatment is based on the non-steroidal anti-inflammatory and most cases are resolvents within 4 to 6 weeks, with recanalization in 9 weeks. In case of persistence, surgery seems necessary as thrombectomy or resection of the superficial dorsal vein of the penis.

Authors’ affiliation:

Correspondent author: Gregoire EVRARD, MD
10 rue de Navarre, 33000 BORDEAUX
Department, CHU Pellegrin, Bordeaux
gregoire.evrard@gmail.com

Evrard G, MD, de la Riviere C, MD, Valdenaire G, MD
Department, CHU Pellegrin, Bordeaux

Article history / info:

Category: Case report
Received: Nov 11, 2013
Accepted: Nov 25, 2013

Conflict of interest statement:

There is no conflict of interest to declare

CASE REPORT

A 30 year old man consults in an emergency department for pain associated with a warm feeling in the penis which appeared suddenly during intercourse. He goes to the hospital, worried about the persistant pain and the swelling that appeared on the dorsal part of his penis. The anamnesis provides no evidence for a trauma during intercourse or in the last past weeks, neither urinary or functional signs such as hematuria or dysuria or arguments in favor of an infectious cause (apyrexia, no risk factors for sexually transmitted disease).

This patient has frequent intercourse, on average every two days over a period still more than 30 minutes, without a period of flaccidity with persistent manual compression of the base of the penis during intercourse. It is not found a personal or family history of neoplasia. He has presented several times in his life episodes of external hemorrhoidal thrombosis.

On physical examination, one can palpate an indurated cord on the back of the base of the penis with a visible dilatation of the
vein upstream of the induration, without edema or heat. There are no visible morphological abnormalities of the external genitalia. The rest of the complete physical examination is unremarkable.

An echography combined with Doppler is performed in the emergency department and finds thrombosis of the superficial dorsal vein of the penis to its base with proximal dilatation and hyperechoic content in the vein measuring 6 mm in diameter (Figures 1 and 2). This thrombosis extends almost to the inguinal region and is divided into several branches. Testicular, superficial femoral and saphenous right and left veins are permeable. There is no visible mass in the corpora cavernosa. A hydrocele blade is observed on the right part of the testes. Testicular volume is normal and there is no abnormality of the epididymis. In the intra-abdominal region, iliac venous and cellars elements are permeable, and no abnormality is found in the visceral organs. There is therefore a strictly localized to the testicular surface network alteration which does not reach the deep network.

Outpatient treatment was initiated by non-steroidal anti-inflammatory drug (ketoprofen 100 mg LP morning and evening) and a preventive anticoagulation (fondaparinux sodium 2.5 mg once a day subcutaneously for 30 days). The patient was informed of the benign symptoms and reinsured. A blood thrombophilia test was performed before initiation of therapy but found no abnormalities.

DISCUSSION

Mondor’s disease is defined as a superficial and spontaneously regressive thrombosis in a healthy vein, making a usually benign disease. Henri Mondor is the first to have described subacute tronculite the chest wall in 1939 [1]. Thrombosis superficial vein of the penis was first described in 1958 by Braun-Falco, in a context of generalized multiple thrombosis, and integrated in Mondor’s disease [2].

Penile Mondor’s disease is a rare disease characterized by thrombosis of the dorsal vein of the penis inducing pain, induration, dilation and sometimes a rash facing it. Often, the lesion may extend into the inguinal region as in our case. In some reported cases, the patients also had signs of functional urinary irritative (voiding burns and urinary frequency). The pain may be continuous or paroxysmal [3-5].

The risk factors found are hypersexuality, sexual abstinence, pelvic trauma and neoplasia [6,7]. They are directly correlated with Virchow’s triad (hemodynamic changes, endothelial injury, hypercoagulability) promoting the formation of thrombosis. In half of the cases, it is not found risk factor and the disease is considered idiopathic. The gains are usually followed without special event and show a low rate of recurrence regardless of the location of thrombosis [8].

In our case, the patient has a particularly long and frequent intercourse, due to a non-return to a flaccid state after ejaculation. He also has long and repeated manual compression at the base of the penis during intercourse to maintain his erection. This behavior of hypersexuality and venous compression resulting in hemodynamic changes are clearly risk factors for thrombosis of the superficial dorsal vein of the penis.

Doppler ultrasonography shows in a simple way, thrombosis and hemodynamic venous alterations (and even arterial indirectly). Thrombosis of the superficial dorsal vein result of a disturbance of venous debit by abridgement of the flow, identical element found in the Doppler ultrasounds done on patients with low venous flow priapism [9].

Sclerosing lymphangitis and Peyronie’s disease are differential diagnoses of pain with penile induration. The first condition is characterized by a thicker lymphatics expansion, which have a tortuous morphology. The second result of a cavernosal fibrosis occurring around the age of fifty with indurated plaques of the corpora cavernosa to the flaccid state.

The mainstay of treatment of superficial thrombosis (implied not deep thrombosis) is based on non-steroidal anti-inflammatory and most cases are resolvents within 4 to 6 weeks, with recanalization in 9 weeks. Treatment with aspirin or other anti-platelet agent will not accelerate healing. Recent studies are in favor of anticoagulation for the prevention of deep thrombosis [10]. In case of persistence, surgery seems necessary such as thrombectomy or resection of the superficial dorsal vein of the

Photo 1: Thrombosis of the dorsal vein of the penis seen by echography

Photo 2: No flow facing the thrombosis during Doppler sonography
penis, although the results of medical treatment versus surgical treatment in the long term have not been described [10;11]. Complications such as deep vein thrombosis or pulmonary embolism were not described in thrombophlebitis of superficial veins of the penis. However, a recent 2012 study involves a purely symptomatic treatment of superficial venous thrombosis in the lower limbs, highlighting for the first time a benefit of preventive anticoagulation. It is based on the fact that the risk factors for deep and superficial thrombosis are the same and therefore the risk of a deep thrombosis is increased when one bears a superficial thrombosis [11]. Priapism, at a superficial thrombosis of the penis has not been described. However, ultrasound works of Han in 2008 show a similar mechanism of flow disturbance in thrombosis of the dorsal penile superficial vein and the low venous flow priapism [9]. We cannot exclude the possibility of such complications, although they have never been described. As a conclusion, penile Mondor's disease is a benign disease with an easy diagnosis for the emergency physician. The treatment is simple, both symptomatic and focused on patient reinsurance. It has well-defined risk factors common to all types of venous thrombosis, especially hypersexuality concerning superficial venous thrombosis of the penis. In case of doubt about the diagnosis, the emergency physician may request an ultrasound with Doppler, non-invasive, inexpensive and widely available in any structure including an emergency department.

REFERENCES

EFFETS DE LA « SÉNIORISATION » DES URGENCES SUR LA PRISE EN CHARGE DES PATIENTS DE LA SALLE D’ACCUEIL DES URGENCES VITALES

Effect of the shift to senior emergency physician staffing in the management of the trauma room patients

Mots clés: sénior, séniorisation, junior, service d’accueil des urgences, évaluation, prise en charge

Key words: leadership, seniorisation, junior, emergency department, evaluation, management

ABSTRACT

Objective: To evaluate the impact of the “seniorisation” of emergency department (ED) on the quality of management for patients of the room of reception of the vital emergencies (RRVE).

Material and method: Retrospective study, regional, spread over two periods (P1 = year 2011, P2 = year 2012) including patients admitted to the RRVE and comparing data from each period: During P2, seniorisation and reorganization of ED. The following events, occurring within 72 hours were recorded: age, sex, diagnosis, time management, refusal of ICU admission, rate of evacuation of patients to the Regional Hospital via Emergency Medical Service (EMS) and the mortality. The evaluation of the impact of “seniorisation” was based on four main criteria: the number of patients admitted to RRVE, the time of management, the number of referrals and rate of mortality.

Results: The epidemiological characteristics were comparable. The most common pathologies were: severe polytrauma 35%, Stroke 28%, septic shock 17%, and 12% intoxication. The average time of care decreased significantly (P1: 180 ± 21 min; P2: 30 ± 12 min). The refusal of ICU admission was noted in 65% of cases. The refusal of evacuation was noted in control 89%. The total care of patients was provided to RRVE. Comparing the statistics of the two periods, there was a decrease in the discharge rate of 74.3% with a slight increase in the mortality rate of 2.9%.

Conclusion: The seniorisation of our ED presents a positive impact on the management of patients of the RRVE. The results are encouraging but do not have to transform the RRVE into an intensive care unit.

Authors’ affiliation:

Correspondent author: Nada DAMGHI, MD
Pôle SAMU–SMUR–SAU, CHR Idrissi
BP : 14020, Kénitra, Maroc
damghinada@hotmail.com

Damghi N, MD1, Lefort H, MD², Guermat L, MD¹, Chebli A, MD¹, Benkodad I, MD¹
1. Pôle SAMU–SMUR–SAU, Hôpital Idrissi, CHR Kénitra, Maroc
2. Service médical d’urgence, Brigade de Sapeurs-Pompiers de Paris, France

Article history / info:
Category: Original article
Received: Oct 9, 2013
Revised: Nov 19, 2013
Accepted: Nov 30, 2013

Conflict of interest statement:
There is no conflict of interest to declare.
RÉSUMÉ

Matériel et méthode : Etude rétrospective, régionale, étalée sur deux périodes (P1 = année 2011, P2 = année 2012) incluant les patients admis à la SAUV et comparant les données de chaque période : durant P2, séniorisation et réorganisation du SAU. Les événements suivants, survenant dans les 72 heures ont été notés : âge, sexe, diagnostic, délai de prise en charge, refus d’admission en réanimation, taux d’évacuation des patients vers le CHU via le SAMU régional et le taux de mortalité. L’évaluation de l’impact de la « séniorisation » était basée sur quatre critères principaux : l’effectif des patients admis à la SAUV le délai de prise en charge, l’effectif des patients référés ainsi que le taux de mortalité.

Résultats : Les caractéristiques épidémiologiques étaient comparables. Les pathologies les plus fréquentes étaient : le polytraumatisme grave 35%, les accidents vasculaires cérébraux 28%, le choc septique 17%, et l’intoxication 12%. Le délai moyen de prise en charge a nettement diminué (P1 : 180 ± 21 min ; P2 : 30 ± 12 min). Le refus d’admission en réanimation était noté dans 65% des cas. Le refus d’évacuation était noté dans 69%. La totalité des patients ont été pris en charge à la SAUV. En comparant les statistiques des deux périodes, on a constaté une baisse du taux d’évacuation de 74,3% s’accompagnant d’une augmentation du taux de mortalité de 2,9%.

Conclusion : La séniorisation de notre SAU présente un impact positif sur la prise en charge des patients de la SAUV. Les résultats sont encourageants ne devant pas ouvrir la voie à une transformation de la SAUV en un service de réanimation.

INTRODUCTION

Les services d’accueil des urgences (SAU) ont pour mission de prendre en charge, en priorité, les besoins de soins immédiats, susceptibles d’engager le pronostic vital et/ou fonctionnel, qui exigent, quels que soient l’endroit ou les circonstances, l’intervention d’un médecin formé à la prise en charge des urgences et les besoins de soins urgents, qui appellent la mobilisation immédiate d’un médecin ayant les compétences et les moyens d’intervenir [1,2]. Ces médecins urgentistes sont amenés à prendre en charge les pathologies d’une population très hétérogène, allant du sujet jeune sans antécédent au vieillard polypathologique.

Au Maroc, la formation reçue par les médecins urgentistes, qui est reconnue comme une spécialité à part entière depuis 2004, implique qu’ils puissent se consacrer aux pathologies relevant de la médecine d’urgence. Cependant l’effectif de ces urgentistes spécialisés ne dépasse pas la trentaine, les services des urgences continuent à être gérés par des urgentistes formés en médecine générale et qui ont appris, souvent sur le terrain, les particularités de cet exercice dont l’enseignement universitaire n’a pas encore atteint partout un développement suffisant. La réforme de santé actuelle vise à sénioriser l’ensemble des SAU marocains. Un médecin sénior peut être soit un médecin urgentiste spécialiste en médecine d’urgence (cinq ans de formation), soit un médecin urgentiste ‘qualifié’ défini par une activité en SAU de plus de quatre années et ayant réalisé une formation universitaire récente en urgentologie de plus de six mois.

L’objectif de cette étude était d’étudier la qualité de prise en charge des patients admis et pris en charge au niveau du SAU d’un centre hospitalier régional (modèle de la salle d’accueil des urgences vitales ou SAUV) avant et après la mise en place de ces médecins séniorisés.

MATÉRIEL ET MÉTHODE

L’étude a été réalisée dans un SAU régional polyvalent accueillant 65 000 patients par an. L’accueil est polyvalent, médicochirurgical et psychiatrique, à l’exception des pathologies gynécologiques et obstétricales. L’étude était rétrospective, établie sur deux périodes P1 (année 2011) et P2 (année 2012) de 12 mois chacune incluant les patients admis à la SAUV et comparant les données de chaque année. Pendant la période P1 (l’année 2011), l’équipe médicale se composait de deux médecins urgentistes et deux internes (étudiants en septième année) pendant la journée de 8 heures à 18 heures, et de deux médecins urgentistes et un interne la nuit.

Cette équipe était responsable à la fois de l’unité de consultation et d’hospitalisation de courte durée, le tri était assuré par un aide soignant. Pendant cette période, la SAUV n’était pas fonctionnelle. Pour ceci, l’évacuation des patients vers le CHU de Rabat qui se situe à une distance de 50 km se faisait systématiquement devant tout manque de lit d’hospitalisation en réanimation sans mise en condition ni régulation préalable via le SAMU régional.

Pendant la période P2 (l’année 2012), cette équipe a été renforcée par des séniorisés : un médecin urgentiste spécialiste pratiquant à temps plein (8 heure à 16 heure) et deux autres médecins urgentistes qualifiés pour chaque équipe de garde. Pendant cette période P2, les médecins urgentistes avaient été spécifiquement...
formés à la pratique de l’urgence par des enseignements magistraux et ateliers pratiques de formation en gestes et soins d’urgence (GSU) (photos 1 et 2), un diplôme universitaire d’urgentologie ainsi que des discussions sur l’acceptabilité et la mise en pratique de conférences de consensus en médecine d’urgence.

Des recommandations de bonne pratique étaient alors rédigées et affichées, mais chaque membre de l’équipe restait libre d’adopter des attitudes diagnostiques et thérapeutiques qui lui semblaient correctes. Le service a été réorganisé en trois zones :

• Tri: un infirmier polyvalent ayant plus de 20 ans d’exercice au SAU avec réactualisation de ses connaissances par le médecin sénior,
• Consultation: deux médecins urgentistes qualifiés et trois internes,
• Unité d’hospitalisation de courte durée: Deux médecins urgentistes qualifiés,
• SAUV : un urgentiste spécialiste et un urgentiste qualifié.

Durant la période P2, la mise en condition des patients de la SAUV se faisait 7 jours sur 7 et 24 heures sur 24 par ces médecins séniors. En cas de refus d’admission en réanimation interne, la régulation des patients via le SAMU régional se faisait de façon systématique. Les médecins séniors assuraient la prise en charge totale des patients suivant les modalités de bonne pratique médicale jusqu’à libération d’un lit d’aval ou bien amélioration des patients.

L’analyse était faite à partir du registre de la SAUV. Durant les deux périodes, les événements suivants, survenant dans les 72 heures, ont été relevés : âge, sexe, diagnostics, délai de prise en charge, disponibilité de lit d’aval en réanimation, accord ou refus de lit d’aval au CHU ainsi que le taux de mortalité. L’évaluation de l’impact de la séniorisation de notre SAU sur la qualité de prise en charge des patients de la SAUV était basée sur quatre critères principaux: l’effectif des patients admis à la SAUV, le délai de prise en charge, l’effectif des patients référés ainsi que le taux de mortalité.

RÉSULTATS

Les deux groupes étaient comparables en termes d’âge (P1 : 45 ± 18 ans avec des extrêmes de J1 à 96 ans, et P2 = 43 ± 20 ans avec des extrêmes de J3 à 92 ans, et de sexe (P1 = 62% hommes, P2 = 59% hommes). Le délai moyen de prise en charge était nettement différent : P1 = 180 ± 21 min ; P2 = 30 ± 12 min. Durant la période P2, l’absence de lit d’aval en réanimation était noté dans 65% des cas alors que le manque de lit d’aval au CHU régional était noté dans 89% des cas (Tableau I). Le nombre des passages au SAU durant les deux périodes était respectivement de 62 644 et 65 883 passages (Figure 1). Les principaux motifs d’admission à la SAUV étaient également comparables : le polytraumatisme grave (28%) ainsi que les accidents vasculaires cérébraux (24%) (Figure 2).

En comparant les statistiques des deux périodes (Tableau II), on a constaté une baisse du taux d’évacuation des patients nécessitant une prise en charge au CHU régional de Rabat de 74,3% avec légère augmentation du taux de la mortalité de 2,9% (Figure 3).

![Photo 1: Ateliers de formation en gestes et soins d’urgence. CHRKenitra\NDamghi©](image1)

![Photo 2: Ateliers de formation en gestes et soins d’urgence. CHRKenitra\NDamghi©](image2)
L'une des activités de base d’un SAU est la planification d'urgence. Les médecins séniors doivent planifier, préparer, pratiquer, examiner, analyser, évaluer et élaborer des stratégies pour les événements imprévus. Leur mission optimale est de réaliser rapidement une démarche diagnostique permettant une orientation adaptée d’un malade et si nécessaire d’instaurer les premières mesures thérapeutiques dans l’attente de transferts intra ou interhospitaliers [9;10].

Le but de cette étude était d'évaluer l'impact d'une formation et d'une séniorisation sur les habitudes de prise en charge des patients dans notre SAU. Il s'agit d'un relevé exhaustif de prise en charge sur deux périodes encadrant une modification de structure. Les périodes étudiées comparables en durée : nombre de jours et période de 6 mois. Le choix était délibéré, afin d'éviter le biais des variations saisonnières susceptibles de modifier le recrutement des patients au SAU. Le fait que l'année 2012 compte plus de patients que l'année 2011 s'explique par l'augmentation régulière de l'activité des SAU. Le contrôle du recrutement a montré que cette augmentation ne s’est accompagnée de modifications notables des pathologies ou de caractéristiques des patients.

Le triage des patients à leur arrivée au SAU est un processus qui vise à identifier, évaluer et classer en fonction de leur priorité les besoins en soins des patients. Dans notre étude, le tri dans la période P2 était assuré par des infirmiers d'accueil et d'orientation (ou IAO) ayant eu récemment une réactualisation de leurs connaissances par les médecins séniors, ceci pourrait expliquer indirectement l'impact positif de la séniorisation de notre SAU sur la baisse semblant très significative du délai de prise en charge des patients relevant de la SAUV. Ce raisonnement a été confirmé dans d’autres études, où la formation infirmière constitue une composante performante dans la qualité de soins et de rapidité de prise en charge [10;11]. D’après Silberholz et al. [12], la présence des médecins séniors a permis la réduction du temps de prise en charge des patients dans les SAUV. Ceci permet une orientation plus rapide vers les services spécialisés, et donc une amélioration de la qualité des soins.

Durant la période P2, le taux d'évacuation des patients vers le CHU régional a nettement diminué. La régulation médicale via le SAMU régional a exigé la disponibilité d’un lit d’aval avant tout transfert et a encouragé la prise en charge surtout des pathologies aigues réversibles au niveau local (SAUV ou secondairement la réanimation interne : exemple des intoxications).

L'effectif des patients pris en charge au niveau de la SAUV était caractérisé par une grande majoration. Ceci pourrait être expliqué par le taux élevé de refus d'admission en réanimation ainsi que la diminution du taux d'évacuation des patients vers le CHU régional. Les causes de refus d'admission en réanimation sont similaires à ceux décrits dans la littérature [13-15], mais ne seront pas abordées dans cette étude. Ces patients étaient pris en charge par les médecins jusqu'à disponibilité d'un lit d'aval. Certaines sorties à domicile ont été faites directement à partir de la SAUV.
Le taux de mortalité était quasi-constant durant les deux périodes d’étude malgré l’importante majoration de l’effectif des patients pris en charge au niveau de la SAUV. Ce paramètre prouve également l’impact positif de la séniorisation du SAU, puisque les médecins seniors ont réussi grâce à leur engagement permanent à assurer une prise en condition et prise en charge initiales adéquates des patients relevant d’un service de réanimation. Ces résultats concordent avec les données de la littérature [16-23] qui trouvent que la mise en place d’un enseignement spécifique au sein d’un service, avec application des recommandations des conférences de consensus, s’inscrit dans une démarche d’assurance-qualité qui ne peut qu’être bénéfique au patient. Les médecins ayant reçu cette formation sont plus aptes à une gestion raisonnée des pathologies rencontrées.

Les patients admis et pris en charge au niveau de la SAUV après séniorisation du SAU étaient caractérisés par une amélioration de leur qualité de prise en charge jugée sur les différents éléments précités : cette amélioration résulte probablement de l’enseignement théorique, basé sur les recommandations des sociétés savantes et de la présence permanente d’un senior. Celui-ci joue en effet le rôle de conseil référent, apportant son expérience et ses connaissances au médecin non expérimenté. Il est en effet le rôle de conseil référent, apportant son expérience et ses connaissances au médecin non expérimenté sur le caractère discriminant ou non de la prise en charge [24;25].

Le recrutement aux urgences d’un personnel médical qualifié, l’utilisation de protocoles diagnostiques et thérapeutiques, le recours aux hospitalisations de très courte durée permettraient de réduire le nombre d’hospitalisations conventionnelles, d’améliorer la qualité de soins et la performance médicale [6].

Le développement de réseaux internes dans la structure, entre la SAUV et le service de réanimation, permettrait d’optimiser encore plus cette qualité de prise en charge. La difficulté d’assurer un lit d’aval en réanimation s’expliquerait par le nombre limité de places (huit lits pour une population de 1 859 540 personnes, pathologie gynécique-obstétricale incluse). Ceci devrait pousser les gestionnaires administratifs à augmenter cette capacité litière.

CONCLUSION

Notre modèle constitue la première expérience au Maroc visant l’analyse de l’intérêt de recrutement de médecins seniors ainsi que la restructuration des SAU. Nous avons démontré que la séniorisation de notre SAU présente un impact positif sur la prise en charge des patients relevant spécifiquement de la SAUV grâce à quatre critères de jugement : diminution du délai de prise en charge, diminution du taux d’évacuation des patients vers le CHU régional, légère augmentation du taux de mortalité et un nombre total d’admissions quasi-constant. Ce concept devrait être élargi sur l’ensemble des SAU marocains.

Nos résultats sont encourageants mais ne doivent pas transformer la SAUV en un service de « réanimation like ». La restructuration d’une filière d’hospitalisation ainsi que l’élaboration de textes de lois visant l’organisation des SAU au Maroc devraient être instaurées dans les meilleurs délais.

RÉFÉRENCES

23. Bendifallah S. Course of study, the end of the basic surgery training for residents in obstetrics and gynaecology. Gynecol Obstet Fertil 2011; 39:265.
LA RÉGULATION MÉDICALE ET LA STRATÉGIE DE MISE À NIVEAU DES URGENCES AU MAROC
Medical dispatch and upgrading strategy of Moroccan Emergency Departments

Mots clés: médecine d’urgence, Maroc, régulation médicale
Keywords: emergency medicine, Morocco, medical dispatch

ABSTRACT
The Moroccan Emergency Medical Aid was largely inspired by the French system but patient handling challenges in the emergency department remain the same. Emergencies are victims of the success of many patients and few resources. Thus, whether in France or Morocco, the importance of operating in network is well established as to improve the quality of care and coordination among the various actors in emergencies, both pre-hospital and intra hospital. Medical control via a dedicated Call Center is an added value for patients in order to identify appropriate means of intervention in pathology and referral to the most appropriate technical support to their condition, in case of medical emergency, whether trauma, obstetrical, pediatric or psychiatric. It also helps to streamline access to care and is considered the gateway to a real specialty pathway.

Authors’ affiliation:
Correspondent author: Hicham HSSAIN, MD
Department of Emergency Medicine
Al Hoceima Regional Hospital, Morocco
hssainhicham@yahoo.fr

Hssain H, MD1, Hssain I, MD, MSc (Med)2
1. Department of Emergency Medicine. Al Hoceima Regional Hospital, Morocco
2. Center for EMS Education, Department of Emergency Medicine. Mulhouse General Hospital, France

Article history / info:
Category: Emergency Development
Received: Sep 1, 2013
Revised: Oct 29, 2013
Accepted: Nov 5, 2013

Conflict of interest statement:
There is no conflict of interest to declare

RÉSUMÉ
Le système d’Aide Médicale Urgente marocain s’est largement inspiré du système français mais les problématiques de prises en charge aux urgences sont les mêmes. Les urgences sont victimes de lors succès : beaucoup de malades et peu de moyens. Ainsi, que ce soit en France ou au Maroc, l’importance du fonctionnement en réseau n’est plus à démontrer pour améliorer la qualité des soins et la coordination entre les différents acteurs des urgences, aussi bien pré hospitalier qu’intra hospitalier. La régulation médicale, via une plate forme téléphonique dédiée, est une plus value pour les patients afin de définir les moyens d’intervention adéquats à sa pathologie et l’orientation vers le plateau technique le plus approprié à son état, en cas d’urgence médicale, traumatologique, obstétricale, pédiatrique ou psychiatrique. Elle permet également de fluidifier l’accès aux soins et est la porte d’entrée dans une véritable filière de spécialité.
INTRODUCTION

La prise en charge des urgences médicales et des catastrophes est un problème de santé publique au Maroc. Le ministère de la santé a, depuis des années 80, exprimé la volonté de créer un système intégré dédié à la gestion de ces urgences. La pénurie en ressources humaines qualifiées a toujours été parmi les principaux obstacles au bon fonctionnement d’un tel système.

CONTEXTE

Malgré tous les efforts consentis ces vingt dernières années en termes de prise en charge des urgences médicales, ce secteur constitue actuellement un point faible majeur du système de santé marocain. Les services des urgences sont en permanence bondés : quatre millions de patients par an, soit 65% des consultations ambulatoires hospitalières, dont 8% se soldent par une hospitalisation. Cela constitue 21% des hospitalisations au sein des hôpitaux publics et 33% des interventions chirurgicales majeures. Les services d’urgence représentent environ 20% environ des dépenses en médicaments [1].

Le projet de mise en place des SAMU, bien qu’entamé, peine à avancer. En effet, les rares SAMU fonctionnels font du transport secondaire non médicalisé, et le ramassage primaire est loin de voir le jour. La principale avancée dans ce domaine a été la mise en place des SAMU et leur organisation en réseau avec les services d’urgence : « Réseau intégré des soins d’urgence médicale » (RISUM). Ce troisième réseau vient en complément des deux réseaux existants : réseau des établissements de soins de santé de base et le réseau des établissements hospitaliers. Il a été officialisé par la circulaire ministérielle N° 1147 du 4 Juillet 2011, qui a posé les bases de son fonctionnement, aussi bien en terme de procédures, d’équipement que de ressources humaines. Les tentatives d’application de ce mode de fonctionnement ont été confrontées à la pénurie en ressources humaines, aussi bien médicales que paramédicales [2]. En effet, la circulaire prévoit le travail au sein des SAMU et des services d’urgence de médecins « urgentistes », à l’image de ce qui se fait notamment au niveau du système de santé français. Or, il n’existe actuellement pas moins de trois types des médecins que l’on peut qualifier d’ « urgentistes » :

- Les médecins spécialistes en médecine d’urgence et de catastrophe : il en existe une vingtaine à l’échelle du pays, leur formation dure 5 ans, et il n’y en a pas plus de deux à trois par an qui sont formés [3].
- Les médecins généralistes titulaires d’un diplôme universitaire (2 ans) de médecine d’urgence : une cinquantaine au niveau national, et ce type de formation n’est plus dispensé [3].
- Les médecins généralistes sans aucune formation spécifique à l’urgence mais travaillant dans des services d’urgence : les plus nombreux, mais leur profil de formation ne leur permet pas d’exercer efficacement dans le RISUM.

Un services d’urgences fonctionnels 24 heures sur 24 et 7 jours sur 7 durant toute l’année est présent dans 85% des hôpitaux (n=118/142), dont la garde est assurée par des médecins généralistes assistés par des médecins spécialistes [1].

Concernant les infirmiers, deux profils exercent actuellement dans les structures du RISUM [4] :

- Les infirmiers polyvalents, sans formation à l’urgence : les plus nombreux, mais leur cursus est plus focalisé sur les soins infirmiers en général que sur les soins d’urgence.
- Les infirmiers anesthésistes : parfaitement capables d’assurer les gestes d’urgence, mais la pénurie de ce profil au sein des blocs opératoires ne permet pas de les recruter au sein des structures d’urgence.

Enfin, indépendamment du RISUM, les infirmiers exerçant au sein des services de réanimation et de soins intensifs sont actuellement des infirmiers polyvalents sans formation particulière concernant les patients les plus lourds.

De part le monde et selon l’Organisation mondiale de la santé, les défis de la prochaine décennie vont s’articuler autour de la lutte contre les maladies non transmissibles :

- Maladies cardiovasculaires,
- Diabète,
- Cancers,
- Traumatismes.

Les systèmes d’urgence se trouvent ainsi au cœur de cette nouvelle approche en matière de santé publique. Au Maroc, l’exigence de nos concitoyens porte à la fois sur la quantité et sur la qualité des prestations fournies au niveau des services d’urgences. Aussi, malgré les efforts continus qui sont mis en œuvre, les urgences connaissent aujourd’hui encore des difficultés de fonctionnement, que ce soit en pré-hospitalier, à l’accueil ou en aval des structures d’urgences et ceci pour trois raisons majeures [2] :

- L’absence de coordination avec les autres acteurs de l’urgence (protection civile, services de santé militaire, secteur privé …),
- Les problèmes de gestion des structures d’urgences et l’absence de référentiel national pour ces dernières,
- L’insuffisance fréquente des lits d’aval dans les structures hospitalières.

La généralisation de la couverture médicale pour tous en lançant le projet RAMED (Régime d’assistance médicale aux économiquement défavorisés) exige, en vue de réussir ce projet sociétal, le respect de la pyramide des soins. La régulation médicale se trouvera ainsi au cœur de ce dispositif sanitaire national.

LE RÉSEAU INTÉGRÉ DES SOINS D’URGENCE MÉDICALE (RISUM)

La stratégie nationale de gestion des urgences médicales et des risques sanitaires liés aux catastrophes a adopté une approche systémique afin de définir les composantes et les missions des structures d’urgence. La circulaire ministérielle n°1147/10 du 4 juillet 2011 relative à l’organisation des SAMU et à la mise en place du RISUM a bien répondu à cette approche [5] :
1. RISUM : troisième réseau de soins au Maroc

A côté du réseau de soins ambulatoires et du réseau hospitalier, le RISUM vient compléter le puzzle de la pyramide de soins en créant un maillage entre les établissements de soin de santé de base, les hôpitaux provinciaux et régionaux ainsi que les centres hospitalo-universitaires (CHU). La notion de population et de territoire conditionne le fonctionnement de ce réseau en mettant au premier plan l’intérêt du patient et son droit au juste soin dans le respect total du choix des personnes et de l’équité.

2. Les composantes du RISUM [5]

- Les Services d’urgence hospitaliers (SUH),
- Le Service d’Assistance Médicale Urgente (SAMU) avec son Centre de Régulation des Appels Médicaux (CRAM) et son Centre d’Enseignement des Soins d’Urgence (CESU),
- Cette structure pouvant être commune à plusieurs régions,
- Les Services Mobiles Hospitaliers d’Urgence et de Réanimation dits SMUr,
- Les Structures de Soins de Santé de Base participant aux activités médicales urgentes (UMP),
- Les moyens de transport sanitaire mobilisés par le CRAM dans le cadre de l’activité d’Assistance Médicale Urgente (AMU).

3. Avantages du RISUM

La pertinence et l’utilité dudit dispositif tant pour le système de soin dans son ensemble que pour les malades. L’effet structurant sur l’offre de soins avec de plus en plus :

- De maîtrise des références inter hospitalières,
- De respect de procédures telles les mises en condition adaptées des cas référs,
- D’orientation des urgences vers la structure la plus adéquate, etc.

Le développement d’un réseau régional coordonné intègre une culture d’évaluation continue du fonctionnement du réseau, et permet de mettre à nu des dysfonctionnements attribués, très souvent à tort, au manque de ressources.

4. Principes généraux de fonctionnement

Le fonctionnement des RISUM répond aux principes suivants :

- La complémentarité entre les RISUM en fonction de leurs ressources,
- L’interopérabilité interrégionale: capacité à fonctionner ensemble et selon les mêmes normes,
- La synergie entre les différentes composantes de chaque RISUM,
- La polyvalence des ressources humaines exerçant au niveau des différentes unités, composant le RISUM.

LA RÉGULATION MÉDICALE

1. Définition

La régulation médicale est l’unité médicale chargée de gérer l’envoi des moyens médicaux ainsi que les évacuations dans le cadre de l’aide médicale urgente. Elle prend en général la forme d’une salle de coordination avec des personnels chargés des communications téléphoniques avec le public et les médecins, des communications radio avec les services de secours mobiles (SMUr, sapeurs pompiers), et d’un médecin régulateur. L’acte de régulation médicale est pratiqué par téléphone après un interrogatoire méthodique et conclu par une décision du médecin régulateur en adéquation avec le besoin de santé du patient : conseil, prescription, envoi de moyens, orientation du patient vers une structure de soins.

2. Historique

En France :

Le concept de régulation médicale est né en France en 1968, avec la création du premier service d’aide médicale urgente (Samu) à Toulouse par le professeur Lareng, afin de coordonner les efforts médicaux entre les équipes pré-hospitalières (Structure mobile d’urgence et de réanimation ou SMUR) et les SUH. Les SAMU seront officialisés en 1976, mais il faudra attendre 1979 pour que le SAMU reçoive directement les appels du public. La loi n° 86-11 du 6 janvier 1986 définit l’AMU comme une organisation qui a pour objet de faire assurer aux malades, blessés et parturientes, quel que soit l’endroit où ils se trouvent des soins d’urgence appropriés à leur état [6]. De plus, il est créé le Centre de réception et régulation des appels (CRRA). Le décret n°87-1005 du 16 décembre 1987 précise les missions du SAMU [6], qui visent à :

- Assurer un écoute médicale permanente ;
- Déterminer et déclencher dans le délai le plus rapide la réponse la mieux adaptée à la nature des appels ;
- S’assurer de la disponibilité des moyens d’hospitalisation publics ou privés adaptés à l’état du patient, compte tenu du respect du libre choix et de faire préparer son accueil ;
- Organiser le cas échéant le transport dans un établissement public ou privé en faisant appel à un service public ou à une entreprise privée de transport sanitaire ;
- Veiller à l’admission du patient ;
- Participer à des tâches d’éducation sanitaire de prévention et de recherche.

Le même décret met en place pour les CRRA un numéro d’appel téléphonique unique, le 15.

Au Maroc :

Au Maroc, la première expérience a été tentée en 1979 au niveau des délégations de la santé de Rabat et de Casablanca sans pouvoir la pérenniser. En 1997, une unité de régulation médicale inter hospitalière a été créée au niveau du SAU du CHU de Casablanca, c’était l’ébauche du SAMU de Casablanca [7].
L’instauration de la spécialité de médecine d’urgence et de catastrophe en 2002 a donné un élan au développement des métiers de l’urgence et notamment la régulation médicale [3]. Mais cette spécialité connaît encore de nombreux problèmes et contraintes liés à sa pratique et également par le manque d’intérêt qui lui a été accordé par le ministère de santé et le ministère de l’enseignement supérieur représentés par les CHU et les facultés de médecine. Jusqu’à aujourd’hui, les médecins spécialistes formés dans cette spécialité n’ont pas encore accès à la voie universitaire. Pour ces médecins qui voudraient s’ouvrir la voie de l’enseignement, c’est paradoxal et décevant. Il persiste également des obstacles liés à la définition de leur statut, leurs missions et attributions et des incertitudes concernant les débouchés de leur carrière à long terme ; ce qui fait que très peu de jeunes médecins sont attirés par cette spécialité. En effet, le ministère de la santé dans le cadre d’une collaboration avec SAMU-Urgences de France a mis en place une stratégie nationale étalée sur quatre ans (2008-2012) ayant comme objectif la mise en place de onze SAMU régionaux [7]. La composante régulation inter hospitalière étant la phase préliminaire de cette approche systémique. Ainsi depuis 2008, huit SAMU ont vu le jour et sont actuellement opérationnels :

<table>
<thead>
<tr>
<th>Régions</th>
<th>Zone de desserte</th>
<th>Lieu d’Implantation du centre de régulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Casablanca</td>
<td>Grand Casablanca</td>
<td>CHU Ibn Rochd (Casablanca)</td>
</tr>
<tr>
<td>Rabat Salé, Z. Zair</td>
<td>Rabat -Salez Z.Z + Gharb-C-B-H</td>
<td>CHU Ibn Sina (Rabat)</td>
</tr>
<tr>
<td>Marrakech - Tensift</td>
<td>Marrakech-Tensift + Tadla-Azil</td>
<td>CHU Mohammed VI (Marrakech)</td>
</tr>
<tr>
<td>Sous Massa Daraâ</td>
<td>Sous-Massa-Daraâ + Guelmim</td>
<td>Hôpital Hassan II (Agadir)</td>
</tr>
<tr>
<td>Oriental</td>
<td>Oriental</td>
<td>Hôpital Farabi (Oujda)</td>
</tr>
<tr>
<td>Meknès -Tafilalt</td>
<td>Meknès - Tafilalt</td>
<td>Hôpital Mohamed V (Meknès)</td>
</tr>
<tr>
<td>Fès Boulemane</td>
<td>Fès Boulemane + T-A-T</td>
<td>CHU Hassan II (Fès)</td>
</tr>
<tr>
<td>Abda-Doukkala</td>
<td>Abda-Doukkala</td>
<td>Hôpital Mohamed V (Safi)</td>
</tr>
</tbody>
</table>

En ce qui concerne les CESU, le CESU central se trouve au sein de la division de l’urgentologie à la direction des hôpitaux rattachée au ministère de santé à Rabat qui travaille en coordination avec quelques CESU régionaux rattachés aux SAMU régionaux. Par ailleurs, il existe un centre de simulation médicale et d’entraînement aux situations d’urgence rattaché au SAMU de Casablanca et la faculté de médecine et de pharmacie de Casablanca [8].

3. Les Missions des centres de régulation

- Assurer une écoute médicale permanente,
- Décider de la réponse la mieux adaptée dans les meilleurs délais,
- S’assurer de la disponibilité des moyens d’hospitalisation publics « ou privés »,
- Organiser le transport,
- Préparer l’accueil du patient,
- Veiller à l’admission du patient dans la structure d’accueil,
- Tenir un dossier médical de régulation dans le respect des règles de bonne pratique médicale et notamment celui du secret professionnel.

LES CHAMPS D’APPLICATION DE LA RÉGULATION MÉDICALE AU MAROC

1. La médecine d’urgence

Elle consiste en la prise en charge diagnostique et thérapeutique initiale et l’orientation appropriée de toutes les situations médicales non prévues. La régulation médicale permet de catégoriser les urgences en :

- Niveaux 1 : urgences absolues,
- Niveaux 2 : urgences vraies,
- Niveaux 3 : permanence des soins,
- Niveaux 4 : conseil médical.

Ceci permet de déterminer les moyens appropriés à mettre en œuvre en faisant interagir de manière synergiques et complémentaires les différentes composantes du RISUM.

2. Réglulation médicale et filières spécialisées

Urgences traumatologiques :

Urgences obstétricales et néonatales :

Malgré les efforts fournis ces dernières années pour réduire la mortalité maternelle et infantile, le Maroc continue malheureusement d’enregistrer des chiffres alarmants dans ce domaine. L’implication des SAMU dans la gestion de ces urgences en assurant une régulation médicale appropriée et des transports secondaires tenant compte des délais de prise en charge et des particularités de l’urgence obstétricale et néonatale permettrait certainement d’améliorer les performances dans ce domaine [2].

Urgences cardiologiques :

L’inversion de la pyramide des âges et la multiplicité des facteurs de risque fait que les maladies cardiovasculaires et notamment
l’infarctus du myocarde deviennent un motif de consultation fréquent dans nos structures d’urgence. L’instauration d’une carte sanitaire des salles de cathétérisme et l’élaboration des protocoles de régulation spécifiques à cette pathologie en concertation avec les médecins cardiologicals garantira au patient une prise en charge rapide et adaptée [2].

Urgences psychiatriques :

L’insuffisance de la gestion des urgences psychiatriques a fait que le ministère de la santé, dans le cadre de son plan d’action 2012-2016 relatif à la santé mental, a précisé des axes d’amélioration de la prise en charge des urgences psychiatriques :

- Organisation de l’aspect architectural des unités en faveur d’une meilleure sécurité des malades et des soignants,
- Mise en place d’une équipe de sécurité de non soignants
- Institutionnalisation de la psychiatrie de liaison.

L’implication des structures composant le RISUM (formation des équipes des urgences, mise à niveau architecturale des SUH, etc.) et l’élaboration de protocoles de régulation spécifiques contribueront forcément à la réussite de ce projet national ambitieux.

CONCLUSION

L’instauration de l’obligation de régulation médicale, l’ouverture de cette dernière au public avec un numéro national unique, l’opérationnalisation des SMUR primaires et la mise à niveau des composantes du RISUM sur le plan humain et matériel amélioreront certainement la perception du citoyen marocain du système de santé de son pays.

RÉFÉRENCES

1. Plan d’action sectoriel santé 2012-2016 : organisation et développement des soins médicaux d’urgences, ministère de santé au Maroc.
3. Facultés de médecine et de pharmacie de Rabat et de Casablanca, service des affaires estudiantines et 3ème cycle des études médicales.
4. Larbi A, Kettani A, la formation d'infirmier spécialisé en soins d'urgence et soins intensifs, congrès urgences 2013 de Marrakech.
5. Circulaire ministérielle N° 1147 du 7 juillet 2011 émanant du ministère de santé au Maroc portant sur l'organisation des SAMU et la mise en place des réseaux intégrés de soins d’urgences médicales (RISUM).
L’INTÉRÊT DE DISPOSER D’UN CENTRE D’ENSEIGNEMENT EN SOINS D’URGENCE (CESU) AU SEIN D’UN HÔPITAL
Benefit of providing a Center for Emergency Medical Services Education within a hospital

Mots clés : centre d'enseignement de soins d’urgence (CESU), développement professionnel continu (DPC), simulation en santé

Keywords: center for EMS education, continuous professional development (CPD), simulation in healthcare

Authors’ affiliation:
Correspondent author: Ismaël HSSAIN, MD, MSc (MEd)
Center for EMS Education
Department of Emergency Medicine
Mulhouse General Hospital, France

Hssain I, MD, MSc (MEd)¹, Cordier E, MD², Hssain H, MD³, Lefort H, MD⁴
1. Center for EMS Education, Department of Emergency Medicine. Mulhouse General Hospital, France
2. Continuous Professional Development. Mulhouse General Hospital, France
3. Department of Emergency Medicine. Al Hoceima Regional Hospital, Morocco
4. Pre Hospital Care Department. Fire Brigade of Paris, France

Article history / info:
Category: Emergency Development
Received: Jul 30, 2013
Revised: Aug 23, 2013
Accepted: Aug 29, 2013

Conflict of interest statement:
There is no conflict of interest to declare

RÉSUMÉ
Le centre d'enseignement des soins d'urgence (CESU) est historiquement « l'école des SAMU » (Services d'Aide Médicale Urgente). Le CESU contribue à la formation initiale et continue des professionnels de santé face à l'urgence. Grâce aux nouvelles techniques pédagogiques mises en œuvre, avec notamment la simulation en santé, leur implantation au sein des établissements de santé est non seulement un atout pour le développement professionnel continu (DPC) mais se révèle aussi un outil indispensable à la prévention et la gestion des risques. Grâce à leur réseau créé en intra et extra hospitalier, les CESU représentent une plus value en terme de coordination des soins et probablement en terme financier. Que ce soit en France ou au Maghreb, ils se profilent comme des acteurs potentiels de l'évaluation des pratiques professionnelles et de la recherche médicale.

ABSTRACT
The CESU (Center for EMS Education) is historically “the school of SAMU” (Emergency Medical Services). This center contributes to the initial and continuous training and education for health professionals facing emergencies. Throughout new teaching techniques implemented, especially with simulation in healthcare, their implementation in healthcare facilities is not only an asset to the continuing professional development (CPD), but also turns out to be an essential tool for risk prevention and management. Through their network established within and outside the hospital, this “learning” center represents an added value in terms of coordination of care and probably in financial terms as well. Whether in France or Maghreb, they are emerging as potential actors in the evaluation of professional practice and medical research.
INTRODUCTION

LA REGLEMENTATION FRANCAISE SUR LES CESU

La première mission est historique, à savoir contribuer à la formation initiale et continue dans le domaine de la prise en charge de l'urgence médicale des professionnels de santé (soignant ou non) des établissements de santé et des structures médico-sociales. Par extension, le CESU a aussi vocation à contribuer à la formation de toute personne susceptible d'être confrontée à un problème de santé « urgent » dans le cadre de son activité professionnelle. A ce titre, il peut dispenser la formation à l'attestation de formation aux gestes et soins d'urgence de niveau 1 et de niveau 2.

La seconde mission est de contribuer à la formation à l'attestation spécialisée aux gestes et soins d'urgence face à une situation sanitaire exceptionnelle, notamment dans le cadre du plan blanc d'établissement prévu à l'article L. 3131-7 du code de la santé publique, mais aussi en cas d'exposition à un risque à caractère nucléaire, radiologique, biologique ou chimique (NRBC).

Enfin, la dernière mission est de participer à la recherche en pédagogie appliquée, à la promotion de l'éducation à la santé et à la prévention des risques sanitaires.

Par ces prérogatives sous un regard légitériste, en organisant la formation en soins d'urgence de tous les professionnels des milieux sanitaires et médico-sociaux, les CESU sont un maillon indispensable de la chaîne d'urgence. Il faut noter la particularité des enseignants qui sont des professionnels de santé (médecins, infirmiers, ambulanciers, aides-soignants...) exerçant au quotidien dans des structures d'urgence hospitalière (Services mobile d'urgence et de réanimation ou SMUR, service d'urgence). Cela renforce grandement le pragmatisme et la pertinence des enseignements. Chaque année entre 150 000 et 200 000 personnes sont formées dans la centaine de CESU actuellement opérationnels en France.

LA PLACE D'UN CESU EN FORMATION CONTINUE

Disposer d'un CESU dans un centre hospitalier est une richesse et un gage de sécurité pour les patients et usagers. L'hypothèse est simple : « les professionnels de santé formés à la gestion de l'urgence vitale par d'autres professionnels expérimentés, formés en pédagogie et aux connaissances médicales et techniques maintenues sont plus aptes à garantir la sécurité des patients que les autres ».

Le CESU contribue à la formation initiale des élèves relevant des instituts de formation de l'hôpital (infirmiers, aide-soignants, kinésithérapeutes, psychomotriciens, manipulateurs en électroradiologie, ergothérapeutes...). Il garantit à ce titre la qualité et de la pertinence des formations à la gestion de l'urgence ainsi que l'information scientifique et médicale transmise aux étudiants sur ces sujets.

Pour les étudiants devenus jeunes diplômés, puis professionnels de l'hôpital, le CESU est une ressource scientifique, technique et pédagogique manifeste. Il occupe un rôle clé dans le maintien des compétences et le développement professionnel continu des agents, conformément à l'article premier du décret 2008-624 relatif à la formation professionnelle, tout au long de la vie des agents de la fonction publique hospitalière [3]. Pour les professionnels de santé médicaux ou paramédicaux soumis à l'obligation de développement professionnel continu (DPC) [4], le CESU conçoit et dispense des programmes conformes aux exigences de l'organisme de gestion du développement professionnel continu (OGDPC) et de la Haute Autorité de Santé (HAS).

A ce titre, les programmes du CESU sont dispensés sous la tutelle du centre hospitalier qui est enregistré comme organisme de formation et habilité à dispenser des programmes de DPC durant la période transitoire [2] :

| Orientation n°3 | contribuer à l’implication des professionnels de santé dans la qualité et la sécurité des soins ainsi que dans la gestion des risques |
| Orientation n°6 | contribuer à la formation professionnelle continue |

Tableau 1 : Orientations nationales du développement professionnel continu des professionnels de santé

Cognitive	acquisition de connaissances ou de manipulation conceptuelle
Analyse de pratique	évaluation de sa pratique professionnelle
Suivi	Evaluation des modifications de pratiques

Tableau II : Structures des formations

Les professionnels de santé suivant les programmes de DPC (cf. encadrés) dispensés par le CESU 68 (Département Haut-Rhin) peuvent ainsi satisfaire leur obligation annuelle réglementaire de DPC.
DEUX EXEMPLES INNOVANTS

En plus d’animer les traditionnelles formations réglementées obligatoires comme l’attestation de formation en gestes et soins d’urgence ou les formations NRBC, le CESU 68 du centre hospitalier de Mulhouse (CHM) est, pour les raisons évoquées au préalable, un acteur clé de la formation continue des professionnels de santé. Sa place centrale dans l’hôpital et ses compétences singulières en font un partenaire privilégié de la coordination générale des soins ou du service de formation continue.

1. Le déploiement de la formation par simulation

Constat de l’institution : une obsolescence rapide des réflexes et compétences en réanimation cardio-pulmonaire pour les professionnels non-confrontés régulièrement à ces prises en charge. Cela se traduit par une perte de chance pour les patients hospitalisés en cas d’arrêt cardio-pulmonaire. En effet, les réflexes acquis lors de séances de formation non régulière se détoxèrent après 6 à 12 mois [5;6]. Il est actuellement suggérer de réaliser des séances plus fréquentes mais plus courtes de « rafraîchissement » aux urgences vitales afin de prévenir cette perte de connaissance et d’améliorer l’acquisition et la rétention des gestes qui saufent [7]. Elles peuvent s’envisager de manière mensuelle [8]. Ce concept de séances d’entraînement, variées et répétées, est tout à fait conforme à celui de la simulation en santé [9;10].

Ingénierie pédagogique du CESU 68 : mise en place de formations réanimation cardio-pulmonaire (rCP) en utilisant la méthode de simulation in situ. Encore peu développées, ces formations sont habituellement réalisées dans des laboratoires reproduisant un environnement de soin : un service, un bloc opératoire, une chambre d’hôpital. Ne disposant pas d’une telle infrastructure, le CHM a développé le concept de simulation « in situ » : au lieu de déplacer les participants dans un laboratoire de simulation, c’est le laboratoire qui se déplace au cœur des services de soin.

A l’issue d’une phase d’installation et de préparation technique, le programme de simulation se déroule dans les locaux du service d’origine des participants [11]. Les professionnels s’exercent sur un mannequin simulateur haute-fidélité connecté à un ordinateur. Cet outil pédagogique à la pointe de la technologie, reproduit les constantes vitales et réagit aux différents stimuli de son environnement comme les massages cardiaques ou les injections de drogues. Ainsi, ce patient factice évolue de façon réaliste selon les actes et les gestes médicaux prodigués. Les cas simulés sont créés « sur mesure » en partenariat avec les équipes médicales locales à partir de situations déjà vécues. Ils sont donc probables, réalisistes et conformes aux profils des patients accueillis dans les unités de soin. Les scénarii validés sont programmés dans le mannequin de simulation qui suit ensuite à la lettre les déroulements prévus selon les algorithmes déterminés en fonction de la prise en charge réalisée par l’équipe s’exerçant. Les séances sont filmées et retransmises en temps réel aux autres participants via une plateforme interne accessible depuis tous les ordinateurs connectés au réseau interne. Le cas achevé, l’ensemble de l’équipe : participants et observateurs, analysent le déroulement de la prise en charge en visionnant le support vidéo lors du débriefing. Le débat animé est structuré selon une méthode formelle et rigoureuse facilitant la prise de recul et l’apprentissage tant individuel que collectif. Les éventuelles erreurs ou non-conformités sont analysées et utilisées comme sources de progrès.

2. L’exemple des bonnes pratiques de monitorage

Constat de l’institution : dans certains services hospitaliers, les flux de personnels liés à l’embauche ou au départ naturels des paramédicaux peuvent être importants. Dans les services disposant de salles de surveillance centralisée, ce taux de rotation du personnel a une conséquence grave : après deux ans, la moitié des professionnels formés à l’utilisation et au paramétrage des appareils de monitorage a changé d’affectation. L’information sur l’usage des appareils pour les nouveaux arrivants est indirecte et non contrôlée (bouche à oreille). La formation des infirmiers est informelle et de durée très variable. Cela se traduit par des risques accrues pour les patients monitorés.

Ingénierie pédagogique du CESU 68 : en partenariat avec la coordination générale des soins, les services techniques biomédicaux et le service formation continue, le CESU 68 a...
supervisé un programme au long cours de formation aux bonnes pratiques de monitorage. Ce programme se décompose en deux temps complémentaires :

• Un temps cognitif classique de formation sous le format d’une conférence. Bâti autour de rappels physiopathologiques et des conduites à tenir en tant que soignant, le contenu a été validé scientifiquement par le CESU. Les deux conférences ont été suivies par plus de 200 personnes.

• Un second temps d’analyse de pratique sur les divers sites a été réalisé au moyen d’un questionnaire d’autodiagnostic transmis au CESU. L’analyse des résultats de cette enquête a permis de concevoir un modèle de formation centré sur les usages et mésusages des appareils de monitorage en service. Les enseignements tirés et les bonnes pratiques formalisées afférentes concernant plus de 300 agents, la réalisation des session implique une logistique d’envergure pilotée par le CESU. Directement animées dans les salles de surveillance centralisée des services de soin, les sessions sont organisées et planifiées par la plateforme logistique du CESU. Systématiquement co-animées par un infirmier et un technicien biomédical, ces séquences ont vocation à renforcer les compétences techniques et paramédicales des professionnels de terrain. Les supports de formation utilisés sont doublement validés : d’abord scientifiquement par le directeur médical du CESU puis techniquement par les fournisseurs des centrales de monitorage. Ces supports pédagogiques sont formulés et utilisés systématiquement par les formateurs afin de garantir l’homogénéité de l’information diffusée.

• La troisième phase de développement verra probablement le maintien des compétences via des séances de simulation in situ, qui permettront également l’évaluation de tout le processus de la formation [15;16].

Des avantages multiples pour l’institution : D’abord une grande réactivité, puis la réponse très adaptée aux besoins institutionnels rendent ce programme particulièrement pertinent. Le modèle étant étalé et standardisé, il est aisément reproductible et offre une souplesse d’organisation incomparable au regard des rares offres de DPC privées dans le domaine. Ainsi, la pertinence des contenus enseignés, le haut niveau de technicité des formateurs, associés à la fluidification des échanges entre les services de soins, biomédicaux et le CESU contribue à la sécurisation de nos prises en charge [17].

ÉTATS DES LIEUX ET PERSPECTIVES AU MAROC

Les CESU sont régis par la circulaire ministérielle marocaine n°1147 du 04 juillet 2011, et sont implantés au sein des SAMU qui comportent également le centre de régulation des appels médicaux (CRAM) et le SMUR [18].

Le CESU, assure la formation permanente et régulière des ressources humaines exerçant au niveau du réseau intégré de soins d’urgences médicales (RISUM), en vue de veiller à maintenir le niveau de compétence exigé. La stratégie nationale marocaine de gestion des urgences médicales et des risques sanitaires liés aux catastrophes a adopté une approche systémique afin de définir les composantes et les missions des structures d’urgence.

A côté du réseau de soins ambulatoires et du réseau hospitalier, le RISUM vient compléter le puzzle de la pyramide de soins en créant un maillage entre les établissements de soin de santé de base, les hôpitaux provinciaux et régionaux ainsi que les Centres Hospitaliers Universitaires (CHU). La notion de population et de territoire conditionne le fonctionnement de ce réseau en mettant au premier plan l’intérêt du patient et son droit au juste soin dans le respect total du choix des personnes et de l’équité.

Les CESU marocains sont classés en deux niveaux. Les CESU de niveau 1 sont implantés dans les Centres Hospitaliers Universitaires (CHU), et les CESU de niveau 2 implantés dans les Centres Hospitaliers Régionaux (CHR), sièges de SAMU. Les CESU de niveau 2, dotés d’un encadrement pédagogique et technique sont chargés de contribuer, en étroite collaboration avec les Facultés de Médecine, à l’enseignement de la médecine d’urgence et à la formation des personnels de santé impliqués dans les activités d’urgence aux gestes et techniques d’urgence. Ils définissent un contenu didactique, théorique et pratique, adapté aux soins et prestations d’urgences. Ils élaborent des supports pédagogiques répondant à un cahier de charge préétabli. Enfin, ils assurent la formation en priorité du personnel des structures sanitaires publiques chargées des activités d’urgences. Au niveau des CHR, la coordination, l’organisation, la gestion et le fonctionnement des trois services concernés par l’urgence médicale, à savoir le CRAM, le CESU, le SMUR et le service d’urgence sont sous la responsabilité d’un médecin titulaire du diplôme de spécialité médicale en médecine d’Urgence et de Catastrophe ou en Anesthésie-réanimation ou d’un diplôme reconnu équivalent par le Ministre chargé de l’Enseignement Supérieur.

Le financement des activités des composantes du SAMU

Les CESU de niveau 1, en plus des activités sus-citées assurent la formation des formateurs et participent à la création de référentiels en médecine d’urgence. Au niveau des CHU, cette mission est assurée par un médecin enseignant, titulaire du diplôme de spécialité médicale en médecine d’urgence et de catastrophe ou en anesthésie-réanimation ou d’un diplôme reconnu équivalent par le Ministre chargé de l’Enseignement Supérieur. L’activité desdits services sera organisée selon le règlement intérieur des CHU.
Régional (CRAM, CESU), est intégré dans le budget de l'hôpital d'implantation. En ce qui concerne les CESU, le CESU central se trouve au sein de la division de l'urgentologie à la direction des hôpitaux rattachée au ministère de la santé à Rabat qui travaille en coordination avec quelques CESU régionaux rattachés aux SAMU régionaux. Par ailleurs, il existe un centre de simulation médicale et d'entraînement aux situations d’urgence, rattaché au SAMU de Casablanca. Actuellement les CESU fonctionnels au Maroc sont ceux des SAMU rattachés aux CHU de Rabat, Casablanca, Fès, Marrakech et Oujda.

L’expérience au Maroc dans ce domaine est encore modeste mais il y a une réelle volonté chez les décideurs sanitaires et politiques d’améliorer le système des urgences et la médecine préhospitalière. Cette volonté est clairement affichée par des actions fortes : création des SAMU, dotation en ressources humaines, achat du matériel (ambulances, matériel médical des soins d’urgences...), formation continue du personnel et mise en place de conventions internationales. Les CESU marocains ont ainsi une belle carte à jouer dans le domaine du développement professionnel continu en médecine d’urgence pour le pays.

CONCLUSION

Les CESU français et marocains sont des acteurs incontournables de la formation initiale ou continue des professionnels de santé en médecine d’urgence. Leurs expertises en pédagogie active leur permettent d’imaginer des programmes de formation au sein des institutions, à la demande, et de répondre ainsi aux besoins locaux d’une façon particulièrement efficace car adaptée. Ces compétences pédagogiques sont reconnues et validées par les instances. Au sein d’un hôpital, la seule spécialité qui dispose d’un outil de la sorte est actuellement la médecine d’urgence. Gagons que chaque structure hospitalière trouvera le moyen de financer à sa juste valeur le CESU [19]. Du coté des formulateurs, ils doivent s’engager dans une démarche qualité et de recherche en éducation médicale afin de prouver leur utilité pour le patient. Cette expertise sera certainement profitable à l’avenir pour les autres spécialités hospitalières. Du point de vue conceptuel, les CESU se doivent d’évoluer vers de vrais Centres « d’Entrainement » aux Soins d’Urgence, grâce à leur savoir faire pédagogique notamment en simulation en santé [20].

RÉFÉRENCES

Spontaneous left hypochondrium pain due to a splenic infarction: A disease not frequently mentioned in emergency unit.

Case report and article review

Mots clés : infarctus splénique, douleur abdominale spontanée, hypochondre gauche

Keywords: splenic infarct, spontaneous abdominal pain, left hypochondrium

ABSTRACT

A lot of patients do arrive at the emergency unit suffering from abdominal pain. Based on the pain localization pointed out by the patient, a first diagnosis can often be precisely found. Left hypochondrium pain with no associated trauma would in many cases reveal some kidney or lower lung disease. Without any signs of chronic diseases or injuries, the spontaneous splenic infarct is rarely mentioned, and by extend even less by young people; This diagnosis would only be identifiable by the mean of imagery. Even if no etiology is found, infectious diseases, having bacterial, viral, parasitic as origin, as well hematology or iatrogenic diseases, have to be mentioned. Research for thromboembolic diseases or malformations would be necessary. Additionally a potential diagnosis of spontaneous splenic infarct might still be possible even without an etiology. The spontaneous splenic infarct diagnostic has to be mentioned in emergency room for a best and more specific research at a second time.

Authors’ affiliation:

Correspondent author: Christelle PATARIN, MD
médecin assistant spécialiste
Pôle urgence Pasteur, Hôpitaux Civils,
39 avenue de la liberté, 68000 Colmar, France
patarin_christelle@yahoo.fr

Patarin C, MD, Ben Hammouda K, MD, Kempf N, MD, Thibaud E, MD,
Saniveau JM, MD, Dussau L, MD, Maka L, MD, Gottwalles Y, MD
Pôle urgence Pasteur, Hôpitaux Civils de Colmar

Article history / info:

Category: case report
Received: Oct 18, 2013
Revised: Nov 10, 2013
Accepted: Nov 25, 2013

Conflict of interest statement:

There is no conflict of interest to declare
Une femme de 19 ans consulte aux urgences pour une douleur de l'hémicorps gauche augmentant à l'inspiration profonde et évoluant depuis 5 jours. Les symptômes ont débuté avec des douleurs en fosse iliaque gauche à type de crampes et une fièvre à 38,9°C sans notion de traumatisme. La patiente consulte son médecin traitant qui ne note pas d'élément clinique particulier. Deux jours après le début des symptômes, elle retourne consulter car les douleurs du flanc gauche irradient dans l'épaule homolatérale. Son médecin lui prescrit alors des anti-inflammatoires non stéroïdiens et un myorelaxant. La symptomatologie restant inchangée, la patiente consulte aux urgences.

L'interrogatoire ne retrouve pas d'antécédent médico-chirurgical, pas de tabagisme, pas d'allergie, pas de notion de voyage récent. L'interrogatoire ne retrouve pas d'antécédent médico-chirurgical sur les douleurs abdominales. Le reste de l'examen clinique est sans particularité.

Ciniquement, la patiente a un index de masse corporelle à 41, la pression artérielle est à 130/80 mmHg, la fréquence cardiaque à 100 bpm, la saturation en oxygène est à 98% en air ambiant. L'EVA est à 7/10. Elle se plaint d'une douleur en fosse iliaque gauche et en hypochondre gauche, reproductible à l'ébranlement lombaire gauche, sans défense ni contracture. La patiente décrit une tendance à la constipation. Elle ne présente pas de brûlure mictionnelle, pas de douleur de l'épaule gauche, pas de douleurs en fosse iliaque gauche à type de crampes et une fièvre à 38,9°C sans notion de traumatisme.
L'infarctus splénique est un diagnostic peu évoqué aux urgences face à une douleur abdominale sans notion de traumatisme. D'après une revue de la littérature [1], la douleur sous costale gauche est le signe clinique le plus fréquent. La biologie note souvent une augmentation des lactates et une hyperleucocytose.

DISCUSSION

Figure 1 : Échographie abdomino-pelvienne. Plages hypodenses périphériques spléniques correspondant à des zones d’infarçissement. A = 22,4 mm ; B = 31,4 mm.

Figure 2 : Scanner abdomino-pelvien avec injection. Coupe transversale au temps artériel. Plusieurs zones hypodenses en faveur de zones d’infarçissement splénique. Artère splénique libre, de calibre fin et perméable.

Figure 3 : Scanner abdomino-pelvien avec injection. Coupe coronale au temps artériel. Plusieurs zones hypodenses en faveur de zones d’infarçissement splénique.
Enfin la littérature rapporte un certain nombre d'infarctus ou de ruptures de rate spontanées [32-34] sans anomalie retrouvée et sur des terrains à priori sains. Des rares de rupture splénique durant la grossesse ont été rapportés [35] ou suite à des efforts vomitifs ou de toux [36].

D'après la littérature [1], le pronostic d'infarctus splénique est le plus souvent favorable. Laprise en charge consiste à un traitement étiologique : les pathologies thromboemboliques nécessiteront un traitement anticoagulant avec surveillance rapprochée. Les cas infectieux seront traités par antiviraux ou antibiotiques adaptés.

Le recours à la splénectomie est indiqué lors de complications graves de l'ischémie comme la rupture de rate ou les nécroses très étendues.

CONCLUSION

L'infarctus splénique et les ruptures de rate doivent être évoqués chez des patients consultant pour des douleurs de l'hypochondre gauche ou moins associées à une instabilité hémodynamique. Les pathologies thromboligènes mais aussi les infections comme celles à EBV ou CMV sont des facteurs de risques les plus souvent retrouvés. Dans tous les cas, seule l'imagerie ou l'examen direct peut confirmer le diagnostic.
Paraquat poisoning is relatively rare and more frequent in the rural areas in the developing countries. Paraquat is responsible for about 8% of poisonings with agricultural toxicants but for more than 25% of the observed fatalities. In 2008, paraquat was banned from the European market; however stocks still persist for private or professional usage. Paraquat intoxication results in liver cytolysis, acute renal injury, and subacute respiratory failure leading to death. A fatal evolution often occurs even though the patient is initially mildly symptomatic. Survival remains exceptional in the presence of respiratory distress, despite the use of optimal supportive measures and immunosuppressive therapies.
QCM 1 – Parmi les propositions suivantes concernant les mécanismes de toxicité du paraquat, lesquelles sont exactes ?

A- Le paraquat est une base forte entrainant une saponification des lipides membranaires.
B- Le paraquat est un acide faible à l’origine d’une acidification du pH sanguin.
C- Le paraquat agit par oxydoréduction en créant des radicaux libres de l’oxygène dans les tissus.
D- La cible principale du paraquat est le pneumocyte.
E- Le paraquat se distribue préférentiellement dans les neurones, grâce à un transport actif très efficace au niveau de la barrière hémato-encéphalique.

QCM 2 – Parmi les manifestations initiales observées chez notre patiente, lesquelles sont à rapporter directement au paraquat ?

A- Les vomissements.
B- La douleur pharyngée intense.
C- Les douleurs abdominales ayant conduit la patiente aux urgences.
D- Le ralentissement psychomoteur.
E- Aucun des symptômes suivants.

QCM 3 – Parmi les lésions suivantes, lesquelles peuvent être observées dans les quelques heures suivant l’ingestion d’une quantité significative de paraquat ?

A- Une gastrite inflammatoire.
B- Une insuffisance rénale aigüe.
C- Une cytolyse hépatique.
D- Une fibrose pulmonaire.
E- Une insuffisance circulatoire aigüe.

QCM 4 – Parmi les paramètres suivants, lesquels ont une valeur pronostique défavorable pour l’intoxication au paraquat ?

A- L’ingestion à estomac plein.
B- L’ingestion à but suicidaire.
C- La présence de lésions muqueuses d’œsophagite à la fibroscopie.
D- Une coloration bleue foncée des urines au test au dithionate.
E- Une concentration plasmatique élevée de paraquat.

QCM 5 – Parmi les affirmations suivantes, quelles sont les mesures à prendre dans les premières heures après admission de la patiente ?

A- Transfert en réanimation médicale.
B- Administration de charbon activé.
C- Antispasmodiques IV.
D- Bains de bouche antalgiques.
E- Procédure d’épuration extrarénale.

QCM 6 – Parmi les mesures suivantes, lesquelles seront à instaurer lors de l’apparition de troubles respiratoires dans les suites d’une intoxication par le paraquat ?

A- Oxygénothérapie à haut débit systématique.
B- Ventilation non invasive en cas de détresse respiratoire.
C- Monoxyde d’azote par inhalation.
D- Antibiothérapie en cas de fièvre.
E- Ventilation protectrice en cas d’intubation.

QCM 7 – Parmi les mesures thérapeutiques suivantes, lesquelles ont démontré un bénéfice pour réduire la mortalité du sujet intoxiqué par le paraquat ?

A- N-acétylcystéine.
B- Déféroxamine.
C- Vitamine C.
D- Corticoïdes à fortes doses IV.
E- Cyclophosphamide IV.

Solutions :

QCM1 – D,E ; QCM2 – B ; QCM3 – A,B,C,E ; QCM4 – B,D,E ; QCM5 – A,B,C,D,E ; QCM6 – B,C,D,E ; QCM7 – D,E.

DISCUSSION

Le paraquat ou 1,1 diméthyl 4,4’ bipyridylium est un herbicide largement utilisé dans le monde. Il occupe en volume le 7ème rang des produits phytosanitaires. Il est utilisé pour tout type de culture, puisqu’il détruit les mauvaises herbes sans laisser de résidus en inhibant la photosynthèse chlorophyllienne. Il est rapidement inactivé après épanagement par adsorption sur les sels du sol, ce qui en fait un composé peu polluant et sans risque d’accumulation dans les organismes animaux.

Le paraquat est le toxique le plus dangereux actuel de l’écosystème. Les intoxications sont rares dans les pays occidentaux. Elles sont bien plus fréquentes en zone rurale dans les pays en voie de développement, et notamment en Asie du Sud-est. Elles font généralement suite à une ingestion à but suicidal et plus rarement accidentel. Une seule gorgée d’une solution concentrée à 200 mg/L est mortelle. Une intoxication est également possible après exposition percutanée ou injection parentérale.

L’intoxication est à l’origine d’une létalité de l’ordre de 80%. Le paraquat est responsable d’une cytolyse hépatique, d’une insuffisance rénale aiguë tubulaire et surtout d’une insuffisance respiratoire subaiguë par fibrose pulmonaire conduisant au décès. En Europe, le produit a été retiré du marché en 2008. Néanmoins, à partir des années 90, une réglementation très stricte de délivrance et d’emploi du paraquat avait été instaurée pour réduire les intoxications : concentration limitée à 40 g/L dans les produits commercialisés, addition obligatoire d’une
substance répulsive odorante et d'une substance émétiqve, coloration bleue des solutions, épandage réglementé avec port de vêtements de protection adaptés, ... Ces mesures avaient été efficaces pour réduire l'incidence des intoxications par le paraquat mais encore insuffisantes pour les éradiquer, ce qui semble désormais le cas, même s'il persiste encore des stocks non détruits chez les professionnels ou les particuliers.

Commentaire QCM 1 : Après ingestion, le paraquat subit des réactions de réduction qui provoquent d'une part, la transformation d'oxygène moléculaire en anion superoxyde, à l'origine de lésions cellulaires par peroxydation des lipides membranaires et d'autre part, une déplétion du NADPH nécessaire au fonctionnement du métabolisme oxydatif cellulaire (Figure 1). La cible du paraquat est principalement le pneumocyte. La destruction des cellules alvéolaires conduit à une alvéolite aiguë puis à une fibrose extensive secondaire à une prolifération fibroblastique.

Après ingestion, l'absorption est rapide avec un pic plasmatique à la deuxième heure et une biodisponibilité faible de moins de 20%. La distribution tissulaire est inégale dans les différents organes, avec une forte diffusion dans le poumon, les reins et le foie. La concentration dans le parenchyme pulmonaire atteint jusqu'à dix fois la concentration plasmatique, en raison d'un processus de transport actif énergie-dépendant. L'élimination du paraquat se fait sous forme inchangée dans les urines. La demi-vie, de l'ordre de douze heures peut s'allonger en cas d'insuffisance rénale.

Le paraquat n'est ni un acide ni une base. Les lésions oropharyngées et digestives de type caustique, même si elles peuvent être douloureuses, ne sont qu'exceptionnellement à l'origine de perforation. Par ailleurs, aucune modification du pH sanguin directement imputable au paraquat n'est observée.

Commentaire QCM 2 : Les troubles digestifs (nausées, vomissements et douleurs abdominales) sont à rapporter au produit émétisant rajoutée de façon réglementaire par le fabricant dans la solution de paraquat commercialisée, afin de réduire la quantité absorbée à la suite d'une ingestion accidentelle ou suicidaire. Le ralentissement psychomoteur est attribuable au syndrome dépressif réactionnel de la patiente et aux conséquences de son passage à l'acte suicidaire. Seules les douleurs pharyngées s'expliquent par les propriétés caustiques du paraquat, avec induction de lésions muqueuses de contact. Leur étendue et tolérance sont variables, sans pour autant aboutir au risque de perforation.

Commentaire QCM 3 : L'intoxication aiguë au paraquat comporte trois phases cliniques :

- Une phase initiale de lésions caustiques, apparaissant avec un intervalle libre de quelques heures et comportant des douleurs pharyngées. La réalisation d'une fibroscopie oesogastroduodénale précoce retrouve une œsophagite et une gastrite diffuse, cette dernière ayant une mauvaise valeur pronostique. Il est plus rare d’observer une perforation digestive.

- Une phase de cytolose hépatique et d’insuffisance rénale aiguë à partir de la douzième heure, secondaire à une tubulopathie aiguë. La part fonctionnelle de l’insuffisance rénale liée aux pertes digestives et à l’arrêt de l’alimentation doit être corrigée pour limiter la toxicité du paraquat. L’atteinte hépatique est en général modérée et de type centrolobulaire.

- Une phase de fibrose pulmonaire progressive, entre le quatrième et sixième jour, aboutissant progressivement au décès, des suites d’un syndrome de détresse respiratoire aigué (SDRA). Le décès survient alors environ 20 jours (de cinq à 70 jours) après l’intoxication. Chez les rares survivants, les lésions pulmonaires sont responsables d’un tableau d’insuffisance respiratoire chronique restrictive.

Dans les cas les plus graves, à la suite d’une ingestion massive ou d’une injection intraveineuse de paraquat, apparaît dans les 24 heures une insuffisance circulatoire, liée aux lésions nécrotiques du cœur, des surrenales, du foie et des intestins et précipitant le décès.

Commentaire QCM 4 : De nombreux facteurs pronostiques ont été décrits. La survie est exceptionnelle en cas d’atteinte respiratoire. L’ingestion, et à un moindre degré la pénétration par des excoriations cutanées, entraînent les lésions les plus sévères. Les formes suicidaires sont plus graves que les formes accidentelles, en raison de la plus grande quantité de produit ingéré. La dose ingérée influence le pronostic vital et la durée.

Figure 1 - Mécanisme de toxicité cellulaire du paraquat.
de l'évolution. La dose mortelle minimale est de 35 mg/kg, ce qui correspond à environ deux gorgées de produit dosé à 100 g/L. Entre 35 et 50 mg/kg, le tableau aboutit à une fibrose pulmonaire. Au-delà de 55 mg/kg, le décès survient dans les quatre premiers jours d'un choc cardiogénique. L'ingestion d'une forme concentrée (20%) est plus grave que celle d'une forme diluée (12%, 8% et 4%).

L'état de répétition gastrique influence le pronostic : l'ingestion à estomac vide est défavorable, alors que l'ingestion suivie d'un repas réduit la biodisponibilité. Les manifestations cliniques précoces, tels qu'une gastrite vue à la fibroscopie, une insuffisance rénale organique et une cytolyse hépatique sont péjoratives. Les ulcérations bucco-pharyngées et l'œsophagite n'ont au contraire aucune valeur pronostique.

La mesure de la concentration plasmatique du paraquat est décisive pour évaluer la gravité (Figure 2). Le nomogramme de Proudfoot permet, en fonction de la concentration plasmatique de paraquat mesurée par rapport à la date d'ingestion, de prédire la probabilité d'évolution vers la fibrose pulmonaire. Tous les patients, dont les concentrations plasmatiques sont situées au-dessous d'une courbe joignant les points 2 mg/L à H4, 0,6 mg/L à H6, 0,3 mg/L à H10, 0,16 mg/L à H16 et 0,1 mg/L à H24, survivent ; tous ceux dont les concentrations sont au-dessus de cette courbe décèdent. Une concentration plasmatique supérieure à 10 mg/L dans les premières 24 heures est synonyme de décès par choc cardiogénique.

Le dosage urinaire du paraquat par test au dithionite est facilement réalisable en urgence dans un laboratoire non spécialisé. Une coloration bleue foncée ou marine des urines a valeur pronostique défavorable. Une pararquatutie ≥ 1 mg/L au cours des premières 24 heures ou ≥ 1 mg/h est péjorative.

Le SIPP (Severity Index of Paraquat Poisoning) est un indice pronostic obtenu en multipliant la paraquatémie par rapport à la date d'ingestion, de prédire la probabilité d'évolution vers la fibrose pulmonaire. Tous les patients, dont les concentrations plasmatiques sont situées au-dessous d'une courbe joignant les points 2 mg/L à H4, 0,6 mg/L à H6, 0,3 mg/L à H10, 0,16 mg/L à H16 et 0,1 mg/L à H24, survivent ; tous ceux dont les concentrations sont au-dessus de cette courbe décèdent. Une concentration plasmatique supérieure à 10 mg/L dans les premières 24 heures est synonyme de décès par choc cardiogénique.

Figure 2 - Nomogramme rapportant l'évolution de 30 patients intoxiqués après ingestion de paraquat, en fonction des concentrations plasmatiques de paraquat mesurées. La ligne pleine représente la relation de Proudfoot observée dans les 24 premières heures. Les lignes en tirets représentent les prolongations de la courbe de Proudfoot ; suivant des équations tri-exponentielles (courbe 1) ou hyperboliques (courbe 2) [adapté de Scherrmann et al., Hum Exp Toxicol 1987].

Commentaire QCM 5 : Il convient d'orienter toute intoxication par le paraquat vers un centre de réanimation spécialisée. Le facteur pronostique le plus important étant la dose réellement absorbée, il est capital de procéder immédiatement à une décontamination digestive : administration de charbon activé, prescription d'adsorbants (terre à fouron 150 g dilué dans 1 l d'eau), de silicates (Bédélíx® 10 sachets dans 1 l d'eau), induction d'une diurèse par du mannitol 10%, etc. Aux urgences, le lavage gastrique garde une place dans l'arsenal thérapeutique et le charbon activé est efficace. L'épuration extra-rénale (hémodialyse en colonne de charbon ou hémodialyse) est indiquée dans les formes graves vues précocement. Néanmoins, il est facile de comprendre que les procédés d'épuration extra-rénale ne peuvent éliminer que le paraquat plasmatique, sans pouvoir modifier le stock tissulaire, notamment pulmonaire, à l'origine des lésions irréversibles. Le volume de distribution est considérable. La quantité totale retirée par une hémodialyse est toujours négligeable par rapport à la quantité absorbée. Celle-ci ne doit donc être entreprise que si les capacités d'élimination du paraquat par les reins est précoce et sévèrement altérée.

Les traitements symptomatiques (antalgiques, antispasmodiques, anxiolytiques, bains de bouche) restent utiles chez un patient symptomatique aux urgences.

En cas de projection cutanée, il convient de retirer immédiatement les vêtements contaminés, de laver abondamment à l'eau et au savon et d'effectuer un dosage de paraquat plasmatique, en cas d'excoriation cutanée. Pour les projections oculaires, il faut laver immédiatement et abondamment à l'eau et effectuer un examen ophtalmologique.

Commentaire QCM 6 : En cas de défaillance respiratoire, l'inhalation de monoxyde d'azote (NO) a permis d'obtenir des cas de stabilisation et de survie. Le maintien d'une ventilation en air, tant que la PaO₂ reste supérieure à 60 mmHg, est fortement recommandé. Il convient d'introduire le NO à partir de ce seuil et de ne mettre l'oxygène que le plus tardivement possible, lorsque la PaO₂ devient ≤ 50 mmHg, en raison de ses propriétés pro-fibro-santes à forte concentration. Si le patient tolère la ventilation spontanée, il est souhaitable d'intuber le patient le plus tôt possible, pour éviter l'aggravation des lésions par une pneumonie infectieuse acquise sous ventilateur, quitte à mettre en place une ventilation non invasive avec aide inspiratoire et pression positive en fin dexpiration (PEEP). Une antibiothérapie précoce est généralement utile dès l'apparition d'une fièvre ou d'un foyer auscultatoire ou radiologique d'inhalation, pour limiter le besoin en oxygène. Cependant, dans beaucoup de cas, force est de constater qu'il n'est pas possible d'éviter l'intubation en raison de la dyspnée croissante, des lésions alvéolaires pharyngées, de l'absence de confort et de l'angoisse. Il est alors nécessaire de procéder à une ventilation protéctrice pulmonaire (volume courant de 6 mL/kg, avec pressions de plateaux < 30 cmH₂O).

Commentaire QCM 7 : De nombreux antidotes ont été proposés, par analogie aux modèles animaux : N-acétylcystéine, déférooxamine, anti-oxydants (supéroxyde dismutase, clofibrate, acide ascorbique, alpha-tocophérol), etc. Leur bénéfice n'a jamais été clairement établi chez l'homme. En 1999, un essai prospectif
CONTINUOUS EDUCATION

CONCLUSIONS

L’intoxication par le paraquat est rare mais gravissime. Il est indispensable d’effectuer au plus vite une décontamination digestive et de prendre contact avec un centre de réanimation médicale spécialisé afin de discuter de la prise en charge, associant des thérapeutiques toxicodynamiques (corticoides et cyclophosphamide) et toxicocinétiques (épuration extra-rénale) (Tableau I). L’oxygénothérapie doit être bannie sauf impossibilité de faire autrement. Les facteurs pronostiques sont bien établis mais l’évolution reste encore souvent défavorable malgré le recours aux différents traitements de décontamination, d’épuration, symptomatiques et antidotiques. Le meilleur moyen de réduire ces intoxications et d’en limiter la morbi-mortalité reste donc une réglementation très stricte voire le trait total du marché.

<table>
<thead>
<tr>
<th>Tableau I - Prise en charge d’une intoxication par le paraquat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitements immédiats</td>
</tr>
<tr>
<td>Décontamination digestive (le plus vite possible, selon disponibilité) : lavage gastrique, charbon activé, Terre à Foulon (150 g dilué dans 1 L d’eau), Bédelix® (silicates, 10 sachets dans 1 L d’eau), apomorphine 0,1 mg/kg sous-cutané, diarrhée osmotique avec mannitol 10%.</td>
</tr>
<tr>
<td>Traitements symptomatiques</td>
</tr>
<tr>
<td>Contacter rapidement une réanimation spécialisée</td>
</tr>
<tr>
<td>Faire pratiquer une fibroscopie oesogastrique pour bilan lésionnel</td>
</tr>
<tr>
<td>Bains de bouche antalgiques</td>
</tr>
<tr>
<td>Bannir toute oxygénothérapie systématique : laisser le patient en air ambiant, recourir au monoxyde d’azote en inhalation si PaO₂ < 60 mmHg, mettre de l’oxygène le plus tardivement si PaO₂ < 50 mmHg, utiliser précocement la ventilation non invasive et ne recourir à l’intubation que le plus tard possible</td>
</tr>
<tr>
<td>Épuration extra-rénale (hémodéfuration sur colonne de charbon voire hémodialyse intermittente) si ingestion significative, paraquatémié élevée ou insuffisance rénale aiguë</td>
</tr>
<tr>
<td>Protocole d’immunosuppression IV avec bénéfice attendu pour les formes mineures et modérées</td>
</tr>
<tr>
<td>Cyclophosphamide (Endoxan®) 15 mg/kg à J1, J2</td>
</tr>
<tr>
<td>Méthylprednisolone (Solumédrol®) 1 g à J1, J2, J3</td>
</tr>
<tr>
<td>Dexaméthasone (Soludécadron®) 10 mg / 8 h pendant 14 jours</td>
</tr>
<tr>
<td>Sans intérêts : N-acétylcystéïne, S-carboxymethylcystéïne, déféroxamine, acide ascorbique, alpha-tocoférol, antioxydants</td>
</tr>
</tbody>
</table>

POUR EN SAVOIR PLUS

RECOMMENDATIONS FOR AUTHORS

Med Emergency, MJEM
The Mediterranean Journal of Emergency Medicine

The Journal publishes articles in English and/or French pertaining to Emergency Medicine from its scientific aspect (research, case studies, clinical articles, orientation and practical conduct), administrative (Management and organization of Emergency Medicine), medical-legal and social aspects. It also accepts articles that deal with prevention of emergencies. Although it focuses more on practical issues of emergency medicine, the Journal accepts theoretical, methodological and analytical articles. It is also interested in communications, letters, commentaries and critiques of issues related to emergency.

Authors can submit their original articles and the accompanying references to the editor: New Health Concept B.P. 90.815. Jdeideh-Lebanon or via email. The article should be accompanied by a letter by the author/s that clearly states that joint authors of the article are aware of the application to publish and have agreed to allow free accessing of texts by New Health Concept Edition publication. Please create a separate file (indicating the name of the author) for all the photographs, tables and graphs you would like to be included in the article and send them to the following address: mjem@newhealthconcept.net All submissions will undergo a preliminary evaluation and an ethical revision by the editorial board to determine whether it will be allowed to appear in the journal. Articles that pass this preliminary evaluation will also be anonymously reviewed by two members of a scientific committee. Once the article has been approved for publication, a biography of 10 lines should be developed.

MANUSCRIPT PREPARATION

Articles are to be submitted in a typewritten format. Paragraphs are double spaced. Font size should be 12. The submitting author should send his contact details with the article such as telephone number or an email address. The original text of the article should be sent without illustrations in its original format (e.g. Microsoft Word). Pages should be numbered. Titles and subtitles of equal importance should be marked identically. Abbreviations should be explained when first encountered in the text. The articles should not exceed 2500 words or not more than 10 pages. Abstracts and Key Words: Each article should include an abstract in English (and in French for French articles) no longer than 300 words. Keywords (not more than 6 words) and the title of the article should also be presented in both languages.

Text: The author needs to respect the following formatting procedures when submitting the article:

• On the front page- the author's name, affiliations, complete mailing address, telephone number and email address. The names and the affiliations of collaborators should be clearly indicated. Please ensure that this information is only presented on the front page and does not appear on the other pages of the article.

• Bibliographic References need to appear in order of appearance in the text. They must be identified in the text by Arabic numbers in brackets. There should be about 10-30 references. They must conform to presentation norms applied in the scientific editing world (E.g. APA).

• Photographs, figures, graphs and tables: these should be sent in separate files and need to be numbered and marked with the author's name, commenting that they need to be numbered in chronological order when they are to be referred to in the text. The term “graph/table/figure/photo number x” should be used in order to avoid confusion with bibliographical references.

• End notes should be listed separately at the end of the text and not at the end of each page.

PS: It's strongly recommended to add photography of the author who can also allow us to communicate his E-mail address.

For research original articles and review articles authors should clearly note the following:

• If the study was approved by a local or international IRB (institutional review board), a government ministry, or a community group.

• The design of a study; a randomized controlled trial or an observational study that includes a control group.

• Discuss attempts to limit bias in the article.

• The design of a review: formal meta-analysis or a systematic review that only includes studies with a control group how the review articles are selected.

• Which statistical tests are used to analyze the data?

ADDENDUM

Conflict-of-Interest Statement* Conflict of interest exists when an author (or the author’s institution), reviewer, or editor has financial or personal relationships that inappropriately influence (bias) his or her actions (such relationships are also known as dual commitments, competing interests, or competing loyalties). These relationships vary from those with negligible potential to those with great potential to influence judgment, and not all relationships represent true conflict of interest. The potential for conflict of interest can exist whether or not an individual believes that the relationship affects his or her scientific judgment. Financial relationships (such as employment, consultancies, stock ownership, honoraria, paid expert testimony) are the most easily identifiable conflicts of interest and the most likely to undermine the credibility of the journal, the authors, and of science itself. However, conflicts can occur for other reasons, such as personal relationships, academic competition, and intellectual passion.

Statement of Informed Consent* Patients have a right to privacy that should not be infringed without informed consent. Identifying information, including patients’ names, initials, or hospital numbers, should not be published in written descriptions, photographs, and pedigrees unless the information is essential for scientific purposes and the patient (or parent or guardian) gives written informed consent for publication. Informed consent for this purpose requires that a patient who is identifiable be shown the manuscript to be published. Authors should identify individuals who provide writing assistance and disclose the funding source for this assistance. Identifying details should be omitted if they are not essential. Complete anonymity is difficult to achieve, however, and informed consent should be obtained if there is any doubt. For example, masking the eye region in photographs of patients is inadequate protection of anonymity. If identifying characteristics are altered to protect anonymity, such as in genetic pedigrees, authors should provide assurance that alterations do not distort scientific meaning and editors should so note.

Statement of Human and Animal Rights* When reporting experiments on human subjects, authors should indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). If doubt exists whether the research was conducted in accordance with the Helsinki Declaration, the authors must explain the rationale for their approach, and demonstrate that the institutional review body explicitly approved the doubtful aspects of the study. When reporting experiments on animals, authors should be asked to indicate whether the institutional and national guide for the care and use of laboratory animals was followed.

*International Committee of Medical Journal Editors ("Uniform Requirements for Manuscripts Submitted to Biomedical Journals") -- February 2006
The responsive emergency team delivers exceptional CPR

And they choose Physio-Control to make it happen.

Today’s responsive emergency team is always looking to elevate the level of care they deliver, and they rely on evidence and data to get them there. With the CPR Solution from Physio-Control, they have the science-based, Guidelines-consistent tools they need to respond better to patients—and the demands of constant performance improvement.

TrueCPR® COACHING DEVICE NEW
real-time and post-event CPR performance feedback

LUCAS® 2 CHEST COMPRESSION SYSTEM
uninterrupted hands-free compressions

CODE-STAT™ DATA REVIEW SOFTWARE
featuring comprehensive CPR analytics

LIFEPAK® 15 MONITOR/DEFIBRILLATOR
with capnography and CPR Metronome

Get ready for a more responsive approach to CPR.

Physio-Control Lebanon
Telephone +961 4 718 414 • Fax +961 4 718 415
Email sami.jabbour@physio-control.com • www.physio-control.com

©2013 Physio-Control, Inc. Redmond, WA, USA
Membership Rates

<table>
<thead>
<tr>
<th>Membership Type</th>
<th>4 Issues/Year (USD)</th>
<th>8 Issues/2 Years (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>Student</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Institution</td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>Outside Lebanon*</td>
<td>Add +20%</td>
<td>Add +20%</td>
</tr>
</tbody>
</table>

* Add $10 USD to send outside Lebanon

The responsive emergency team delivers exceptional CPR—and they choose Physio-Control to help make it happen.

Lifepak 15 Monitor/Defibrillator
- Biphasic up to 360 joules
- With capnography and CPR Metronome

LUCAS 2 Chest Compression System
- Uninterrupted hands-free compressions

TrueCPR Coaching Device
- Real-time and post-event CPR performance feedback

The Advertising Organizations:
- GNCM – cover page 2
- Physio-Control – page 47 - 48
- Med Emergency MJEM – cover page 3
- Karl-Storz - back cover

Physio-Control Lebanon
- **Telephone:** +961 4 718 414
- **Fax:** +961 4 718 415
- **Email:** sami.jabbour@physio-control.com
- **Website:** www.physio-control.com

©2013 Physio-Control, Inc. Redmond, WA, USA
Because you deserve the best...

More than a journal, Med Emergency a quarterly publication, is one of the first forums in the Mediterranean and Arab countries where emergency professionals share their experiences and expertise across the region and the whole world. High standards whilst reader friendly.

For information:
info@newhealthconcept.net – www.newhealthconcept.net
C-MAC® for Airway Management – a Sophisticated System

* Image output for S-Video and USB, compatible with Philips IntelliVue MX 800 for Airway Cockpit as well as other, non-medical grade monitors.